Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T05:38:13.771Z Has data issue: false hasContentIssue false

Flux Pinning and Creep in High Temperature Superconductors

Published online by Cambridge University Press:  26 February 2011

P. H. Kes
Affiliation:
Kamerlingh Orines Laboratorium, Leiden University, P. O. Box 9506, 2300 RA Leiden, The Netherlands
C. J. Van Der Beek
Affiliation:
Kamerlingh Orines Laboratorium, Leiden University, P. O. Box 9506, 2300 RA Leiden, The Netherlands
Get access

Abstract

Various questions concerning pinning and flux creep in high- temperature superconductors are addressed. First the pinning force by point defects in CuO2-layers in Bi:2212 and Y:123 single crystals is computed. Then some possibilities for the pin mechanism of the recently discovered screw dislocations in sputtered Y:123 films are discussed. Finally, we turn to the issue of flux creep in these materials and the relation between activation barrier and current density. The relevance of different creep models is further elucidated by the numerical solution of the non-linear creep equation for infinite slab and cylinder geometries and various initial field and current distributions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kes, P. H., J. van den Berg in: Studies of High Temperature Superconductors, Vol. 5, Narlikar, A., ed. (NOVA Science Publishers, New York, 1990) p.83.Google Scholar
[2] van der Beek, C. J. and Kes, P. H., Phys. Rev. B43, 13032 (1991).Google Scholar
[3] Kramer, E. J., Phil. Mag. 33, 331 (1976);Google Scholar
Pande, C. S., Appl. Phys. Lett. 28, 462 (1976).Google Scholar
[4] Murakami, M., Morita, M., Doi, K., Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).Google Scholar
[5] Jin, S., Tiefel, T. H., Nakahera, S., Graebner, J. E., O'Bryan, H. M., Fastnacht, R. A., and Kammlott, G. W., Appl. Phys. Lett. 56, 1287 (1990).Google Scholar
[6] Hawley, M., Raistrick, J. D., Beery, J. G., and Houlton, R. J., Science 251, 1587 (1991).Google Scholar
Gerber, Ch., Anselmetti, D., Bednorz, J. G., Mannhart, J. and Schlom, D. G., Nature 350, 279 (1991).Google Scholar
[7] Bulaevski, L. N., Eksp, Zh., Teor. Fiz 64, 2241 (1973) [Sov. Phys. JETP 37, 1133 (1973)].Google Scholar
[8] Thuneberg, E. V., Cryogenics 29, 236 (1989);Google Scholar
Low, J. Temp. Phys. 57, 415 (1984).Google Scholar
[9] van der Beek, C. J., Kes, P. H., Maley, M. P., Menken, M. J. V. and Menovsky, A. A., submitted to Physica C.Google Scholar
[10] Feigelman, M. V., Vinokur, V. M., Phys. Rev. B41, 8986 (1990);Google Scholar
Feigelman, M. V., Geshkenbein, V. B., Laxkin, A. I., and Vinokur, V. M., Phys. Rev. Lett. 63, 2303 (1989).Google Scholar
[11] An efficiency factor accounting for the layered structure is incorporated in the condensation energy. I am indebted to John Clem for pointing this out.Google Scholar
[12] Kramer, E. J., J. Appl. Phys. 44, 1360 (1976);Google Scholar
Dew-Hughes, D., Phil. Mag. B55, 459 (1987);Google Scholar
Pruijmboom, A., Kes, P. H., van der Drift, E., and Radelaar, S., Phys. Rev. Lett. 60, 1430 (1988); Appl. Phys. Lett. 52, 662 (1988); Cryogenics 29, 232 (1989);Google Scholar
Plummer, C. J. G. and Evetts, J. E., IEEE Trans. Magn. Mag. 23, 1179 (1987);Google Scholar
Warnes, W. H. and Labalestier, D. C., IEEE Trans. Magn. Mag. 23, 1183 (1987).Google Scholar
[13] Mannhart, J., Anselmetti, D., Bednorz, J. G., Gerber, Ch., Müller, K. A., and Schlom, D. G., Proceedings of the International Workshop on Critical Currents, Cambridge, July 1991, to be published in Supere. Sci. Technol.Google Scholar
[14] Pan, V. et al., Proceedings of the International Workshop on Critical Currents, Cambridge, July 1991, to be published in Supere. Sci. Technol.;Google Scholar
Streiffer, S. K., Lairson, B. M., Eom, C. B., Clemens, B. M., Bravman, J. C., and Geballe, T. H., Phys. Rev. B43, 13007 (1991).Google Scholar
[15] Yeshurun, Y. and Malozemoff, A. P., Phys. Rev. Lett. 60, 2202 (1988).Google Scholar
[16] Malozemoff, A. P. in: Physical Properties of High Temperature Superconductors I, Ginsberg, D. M. ed. (World Scientific Publishers, Singapore, 1989).Google Scholar
[17] Hagen, C. W. and Griessen, R. in: Studies of High Temperature Superconductors, Vol.3, Narlikar, A. V. ed. (NOVA Science Publishers, New York, 1990) p.159.Google Scholar
[18] Chaddah, P. and Bhagwat, K. V., Phys. Rev. B43, 6239 (1991).Google Scholar
[19] Kes, P. H., Aarts, J., van den Berg, J., van der Beek, C. J. and Mydosh, J. A., Superc. Sci. Technol. 1, 242 (1989).Google Scholar
[20] Koch, R. H., Foglietti, V., Gallagher, W. J., Koren, G., Gupta, A., and Fisher, M. P. A., Phys. Rev. Lett. 63, 1511 (1989);Google Scholar
Gammel, P. L., Schneemeyer, L. F. and Bishop, D. J., Phys. Rev. Lett. 66, 953 (1991);Google Scholar
Olson, H. K., Koch, R. H., Eidelloth, W., and Rober-tazzi, R. P., Phys. Rev. Lett. 66, 2661 (1991).Google Scholar
[21] Fisher, M. P. A., Phys. Rev. Lett. 62, 1415 (1989);Google Scholar
Fisher, D. S., Fisher, M. P. A., and Huse, D., Phys. Rev. B43, 130 (1991).Google Scholar
[22] Maley, M. P., Willis, J. O., Lessure, H. and McHenry, M. C., Phys. Rev. B42, 2639 (1990).Google Scholar
[23] Vinokur, V. M., Kes, P. H., and Koshelev, A. E., Physica C168, 29 (1990);Google Scholar
Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I., Physica C167, 177 (1990).Google Scholar
[24] A more accurate and elaborated account is given by van der Beek, C. J., thesis, Leiden, 1992; andGoogle Scholar
van der Beek, C. J. et al., submitted to Physica C.Google Scholar
[25] Nattermann, T., Phys. Rev. Lett. 20, 2454 (1989);Google Scholar
Fischer, K. H., Nattermann, T., Phys. Rev. B43, 10372 (1991).Google Scholar
[26] Vinokur, V. M., Feigelman, M. V., Geshkenbein, V. B., and Larkin, A. I., Phys. Rev. Lett. 65, 259 (1990);Google Scholar
Nelson, D. R., Phys. Rev. Lett. 60, 1973 (1988);Google Scholar
Nelson, D. R., Seung, H. S., Phys. Rev. B39, 9153 (1989).Google Scholar
[27] Malozemoff, A. P. and Fisher, M. P. A., Phys. Rev. B42, 6784 (1990).Google Scholar
[28] Svedlindh, P., Rossel, C., Niskanen, K., Norling, P., Nordblad, P., Lundgren, L., and Chandrashekhar, G. V., Physica C 176, 336 (1991).Google Scholar
[29] Shi, D. and Xu, M., Phys. Rev. B (1991).Google Scholar
[30] Keller, C., Kupfer, H., Meier-Hirmer, R., Wiech, U., Selvamanickam, V. and Salama, K., Cryogenics 30, 410 (1990).Google Scholar
[31] Zeldov, E., Amer, N. M., Koren, G., Gupta, A., McElfresh, M. W., and Gambino, R. J., Appl. Phys. Lett. 56, 680 (1990).Google Scholar
[32] Vinokur, V. M., Feigelman, M. V., and Geshkenbein, V. B., Phys. Rev. Lett. 67, 915 (1991).Google Scholar
[33] Irie, F. and Yamafuji, K., J. Phys. Soc. Jpn. 23, 255 (1967).Google Scholar
[34] Däumling, M. and Larbalestier, D. C., Phys. Rev. B40, 9350 (1989).Google Scholar