Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-22T12:19:06.870Z Has data issue: false hasContentIssue false

Fluorinated Surfactant Templating of Ordered Nanoporous Silica

Published online by Cambridge University Press:  10 February 2011

Stephen E. Rankin
Affiliation:
Chemical and Materials Engineering Department, University of Kentucky, Lexington, KY 40506-0046, U.S.A. e-mail: srankin@engr.uky.edu
Bing Tan
Affiliation:
Chemical and Materials Engineering Department, University of Kentucky, Lexington, KY 40506-0046, U.S.A. e-mail: srankin@engr.uky.edu
Hans-Joachim Lehmler
Affiliation:
Department of Occupational and Environmental Health, University of Iowa, College of Public Health, Iowa City, IA 52242-5000 U.S.A. e-mail: hans-joachim-lehmler@uiowa.edu
Barbara L. Knutson
Affiliation:
Chemical and Materials Engineering Department, University of Kentucky, Lexington, KY 40506-0046, U.S.A. e-mail: srankin@engr.uky.edu
Get access

Abstract

We will describe the first synthesis of ordered mesoporous silica using a fluorinated surfactant template. Nitrogen adsorption, x-ray diffraction and TEM results will be presented that show that at room temperature, we form particles with well-ordered 2D hexagonal pores using a cationic surfactant with a partially fluorinated octyl (C8) tail. The pore diameter determined by the inflection in the nitrogen adsorption isotherm is on the order of 2.6 nm and the pore size distribution is very narrow. Consistent diameters are found with a modified Kelvin equation approach and with nonlocal density functional theory. The same pore size and long-range order are found for a range of surfactant to silica ratios.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S.. Nature 359, 710712 (1992)Google Scholar
2. Ciesla, U. and Schüth, F.. Micropor. Mesopor. Mater. 27, 131149 (1999)Google Scholar
3. Ying, J. Y., Mehnert, C. P. and Wong, M. S.. Angew. Chem. Int. Ed. 38, 5677 (1999)Google Scholar
4. Huo, Q. S. et al. Nature 368, 317321 (1994)Google Scholar
5. Huo, Q., Margolese, D. I. and Stucky, G. D.. Chem. Mater. 8, 11471160 (1996)Google Scholar
6. Krafft, M. P. and Riess, J. G.. Biochim. 80, 489514 (1998)Google Scholar
7. Monduzzi, M.. Curr. Opin. Colloid Interface Sci. 3, 467477 (1998)Google Scholar
8. Davis, M. E.. Chem. Eur. J. 3, 17451750 (1997)Google Scholar
9. Ryoo, R. et al. J. Am. Chem. Soc. 123, 16501657 (2001)Google Scholar
10. Asakawa, T., Hisamatsu, H. and Miyagishi, S.. Lang. muir 11, 478482 (1995)Google Scholar
11. Jaroniec, M., Kruk, M. and Olivier, J. P.. Langmuir 15, 54105413 (1999)Google Scholar
12. Brunauer, S., Emmett, P. H. and Teller, E.. J. Am. Chem. Soc. 60, 309319 (1938)Google Scholar
13. Kruk, M., Jaroniec, M. and Sayari, A.. Langmuir 13, 62676273 (1997)Google Scholar
14. Ravikovitch, P. I., Odomhnaill, S. C., Neimark, A. V., Schüth, F. and Unger, K. K.. Langmuir 11, 47654772 (1995)Google Scholar
15. Barrett, E. P., Joyner, L. G. and Halenda, P. P.. J. Am. Chem. Soc. 73, 373380 (1951)Google Scholar
16. Neimark, A. V., Ravikovitch, P. I., Grun, M., Schüth, F. and Unger, K. K.. J. Colloid Interface Sci. 207, 159169 (1998)Google Scholar
17. Choma, J., Burakiewicz-Mortka, W. and Jaroniec, M.. Coll. Surf. A: Phys. Eng. Aspects 203, 97103 (2002)Google Scholar