Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T19:54:57.308Z Has data issue: false hasContentIssue false

Floating Temperature Deposition of Device Quality SiO2 Thin Films by DECR Plasma

Published online by Cambridge University Press:  22 February 2011

B. Agius
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
M. C. Hugon
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
N. Jiang
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
F. Varniere
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
F. Plais
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
D. Pribat
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
M. Froment
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
M. Puech
Affiliation:
Université de Paris Sud, BP 127, 91403 ORSAY FRANCE.
Get access

Abstract

Low temperature deposition of dielectric thin films is more and more used in very largescale integrated (VLSI) circuits. For this purpose, distributed electron cyclotron resonance (DECR) plasma appears to be a promising tool. The most interesting feature of this recent plasma is the high ion density (≈1011 cm−3) associated with low electronic temperature (2–3eV) and low energy species (20–30 eV). The purpose of this study is to discuss the effects of the reactant gas mixture composition (O2sol;SiH4) and the rf substrate bias power on the physical, chemical and electrical properties of DECR SiO2 films deposited at floating temperature (<100°C). Under optimum deposition conditions, the films show excellent characteristics, comparable to those obtained with thermal oxides grown at 850–1050°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Batey, J., Tiemey, E., Stasiak, J. and Nguyen, T.N., Appl. Surf. Sci., 39, 1 (1989).Google Scholar
[2] Hirao, T., Setsune, K., kitagawa, M., Kamada, T., Wasa, K., Tsukamoto, K. and Izumi, T., Jpn. J. Appl. Phys. 27, 30 (1988).Google Scholar
[3] Plais, F., Agius, B., Abel, F., Siejka, J., Puech, M., Ravel, G., Alnot, P. and Proust, N. ,J. Electrochem. Soc. 139, 5, 1489 (1992).Google Scholar
[4] Plais, F., Agius, B., Proust, N., Cassette, S., Ravel, G. and Puech, M., Appl. Phys. Lett. 59 (7), 837 (1991).Google Scholar
[5] Jiang, N., Hugon, M.C., Agius, B., Kretz, D., Plais, F., Pribat, D., Carriere, T. and Puech, M., Jap. J. Appl. Phys, 31A, L1404 (1992).Google Scholar
[6] Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
[7] Durandet, A., Joubert, O., Pelletier, J. and Pichot, M., J. Appl. Phys. 67, 3862 (1990).Google Scholar
[8] Amsel, G., Nadai, J.P., D'Artemare, E., David, D., Girard, E. and Moulin, J., Nucl. Instr. and Methods 92, 481 (1971).Google Scholar
[9] Vickridge, I. C., Nucl. Instr. and Methods B34, 470 (1988).Google Scholar
[10] Carriere, T., Agius, B., Vickridge, I., Siejka, J. and Alnot, P., J. Electrochem. Soc. 137, 1582 (1990).Google Scholar
[11] L'Ecuyer, J., Brassard, C., Cardinal, C., Chabbal, J., Deschenes, L., Labrie, J.P., Terreault, B., Martel, J.G., St James, R., J. Appl. Phys. 47, 381 (1976).Google Scholar
[12] Aspnes, D.E., Thin Solid Films, 89, 249 (1992).Google Scholar
[13] Pliskin, W. A. and Lehman, H. S., J. Electrochem. Soc. 112, 1013 (1965).Google Scholar
[14] Castagne', R. and Vapaille, , Surf. Sci. 28, 157 (1971).Google Scholar