Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T12:08:07.163Z Has data issue: false hasContentIssue false

Flexible and monolithically integrated CIGS-Modules

Published online by Cambridge University Press:  21 March 2011

F. Kessler
Affiliation:
Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Hessbruehlstrasse 21c, 70565 Stuttgart, Germany
K. Herz
Affiliation:
Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Hessbruehlstrasse 21c, 70565 Stuttgart, Germany
M. Powalla
Affiliation:
Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Hessbruehlstrasse 21c, 70565 Stuttgart, Germany
M. Hartmann
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
M. Schmidt
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
A. Jasenek
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
H. W. Schock
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

Monolithically integrated Cu(In,Ga)Se2-mini-modules (CIGS) have been fabricated on polymer as well as on metal foils. Preferred foils with view on costs and physical properties were ferritic steel, titanium, Fe/Ni-alloys (e.g. Kovar®) and polyimide as the only appropriate low temperature candidate. The metal substrates were isolated by multiple layers of SiOx and Al2O3 which served both as diffusion barrier against substrate elements and dielectric barrier. Small area cell efficiencies of 13.8% on ferritic steel foils and 10.6% on polymer foils (both without antireflective coating) were obtained. First monolithically integrated submodules of up to 10×10cm2 substrate area were fabricated both on ferritic steel and polyimide substrates. Different patterning methods have been applied and matched to the respective substrate materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.From PV News, editor Maycock, Paul, yearly February editions.Google Scholar
2. Contreras, M., Egas, B., Ramanathan, K., Hiltner, J., Hasoon, F., Noufi, R., Progress in Photovoltaics, 7, 311 (1999).Google Scholar
3. Basol, B.M., Kapur, V.K., Leidholm, C.R., Halani, A., Solar Energy Materials and Solar Cells 43, 93 (1996).Google Scholar
4. Tiwari, A.N., Krejci, M., Haug, F.J., Zogg, H., Progress in Photovoltaics: Res. & Appl., 7, 393 (1999).Google Scholar
5. Kessler, F., Herz, K., Groß, E., Powalla, M., Baumgärtner, K.-M., Schulz, A., Herrero, J., Proc. of the 16th Europ. Photovolt. Sol. En. Conf., 317 (2000).Google Scholar
6. Hartmann, M., Schmidt, M., Jasenek, A., Schock, H.-W., Kessler, F., Herz, K., Powalla, M., Proc. of the 28th IEEE Phot. Spec. Conf. (2000), in press.Google Scholar
7. Lammer, M., Klemm, U., Powalla, M., Thin Solid Films Vol 387/1-2, 33 (2001).Google Scholar