Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T00:26:25.662Z Has data issue: false hasContentIssue false

Flashlamp-Pumped Dye and Excimer Laser Planarization of Thin Metal Films

Published online by Cambridge University Press:  25 February 2011

Paul F. Marella
Affiliation:
Stanford Solid-State Electronics Laboratory, Stanford University, Stanford, CA 94305
David B. Tuckerman
Affiliation:
LP Program, Special Studies Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
R. Fabian Pease
Affiliation:
Stanford Solid-State Electronics Laboratory, Stanford University, Stanford, CA 94305
Get access

Abstract

The fundamental differences between excimer (≈ 30 ns pulse duration) and flashlamp-pumped dye (≈ 500 ns pulse duration) laser planarization are examined for 1.5-2 µm thick gold films over SiO2 layers. Test structures containing bar patterns (square waves) of 5000 Å peak-to-trough amplitude with spatial periods ranging from 10 µm to 100 µm were prepared and laser-irradiated. A linear model is presented which describes the time-evolution of the film's surface topography when melted with a dye laser pulse. Excimer laser planarization is found to be susceptible to evaporative recoil effects which may cause undesired pattern amplification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuckerman, D. B. and Weisberg, A. H., IEEE Electron Device Letters, EDL–7, 1(1986).Google Scholar
2. Mukai, R., Sasaki, N. and Nakano, M., IEEE Electron Device Letters, EDL–8, 76(1987).Google Scholar
3. Mukai, R., Kobayashi, K. and Nakano, M., in Proc. 1988 VLSI Multilevel Interconnection Conf.(V-MIC), IEEE Cat. 88CH2624-5, June 1988, pp. 101107.CrossRefGoogle Scholar
4. Touloukian, Y. S. and Ho, C. Y., Thermophysical Proerties of Matter, New York: IFI / Plenum,1973.Google Scholar
5. Allmen, M. von, Laser-Beam Interactions with Materials. Springer-Verlag, 1987, pp. 163170, pg.17.CrossRefGoogle Scholar
6. Bernhardt, A. F., Contolini, R. J., Tuckerman, D. B., Weisberg, A. H., in Laser and Particle Beam Chemical Processes on Surfaces, Materials Research Society Symposium Proceedings, volume 129, Johnson, A. Wayne, Loper, G. L., Sigmon, T. W., Ed's, this volume.Google Scholar
7. Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Great Britain: Pergamon Press Ltd., 1959, Chapter II.Google Scholar
8. Turkdogan, E. T., Physical Chemistry of High Temperature Technology, UK: Academic Press inc., 1980, Chapter 3.Google Scholar
9. Stoer, J. and Bulrisch, R., Introduction to Numerical Analysis, New York: Springer-Verlag, 1980, pp. 246248.Google Scholar
10. Lyon, R. N., ed., Liquid Metals Handbook. Washington, D.C.: U.S. Government Printing Office, June 1952, p.41.Google Scholar
11. Levich, V. G., Physicochemical Hydrodynamics. Prentice-Hall Inc., 1962, pp.599608.Google Scholar
12. Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Clarendon Press, Oxford, 1959, Chapter XII.Google Scholar
13. Kubaschewski, O., Evans, E. LL., and Alcock, C. B., Metallurgical Thermochemistry, Pergamon Press, 1967, pg. 366.Google Scholar
14. Tuckerman, D. B. and Schmitt, R. L., in Proc. 1985 VLSI Multilevel Interconnection Conf. (V-MIC), IEEE Cat. 85CH2197-2, June 1985, pp. 2431.Google Scholar