Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-25T12:17:30.946Z Has data issue: false hasContentIssue false

A First-Principles Study of the Phase Stability of Fcc-and Hcp-Based Ti-Al Alloys

Published online by Cambridge University Press:  01 January 1992

Mark Asta
Affiliation:
Department of Materials Science and Mineral Engineering, University of California at Berkeley, Berkeley, CA 94720, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley CA 94720
Mark van Schilfgaarde
Affiliation:
Department of Materials Science and Mineral Engineering, University of California at Berkeley, Berkeley, CA 94720, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley CA 94720
Didier de Fontaine
Affiliation:
SRI International, Menlo Park, CA 94025
Get access

Abstract

In this paper we present results of a first-principles study of phase stability and structural and thermodynamic properties of fcc- and hcp-based Ti-Al alloys. In particular, the full-potential linear muffin tin orbital method has been used to determine heats of formation and other zero-temperature properties of 9 fcc and 7 hcp ordered superstructures as well as fcc and hep Ti and Al. From these results a set of effective cluster interactions are determined which are used in a cluster variation method calculation of the solid-state portion of the composition-temperature phase diagram for fcc- and hcp-based alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahn, R. W., MRS Bulletin 16, 18 (1991); Fleischer, R. L., Dimiduk, D. M. and Lipsitt, H. A., Ann. Rev. Mater. Sci. 19, 231 (1989).Google Scholar
2. Asta, M., de Fontaine, D., van Schilfgaarde, M., Sluiter, M. and Methfessel, M., Phys. Rev. B 46, 5055 (1992).Google Scholar
3. Methfessel, M., Phys. Rev. B 38, 1537 (1988).Google Scholar
4. Andersen, O.K., Jepsen, O. and Glötzel, D., in Highlights of Condensed Matter Theory, edited by Bassani, F. et al. (North Holland, Amsterdam 1985).Google Scholar
5. Nicholson, D. M., Stocks, G. M., Temmerman, W. M., Sterne, P. and Pettifor, D. G., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C. (Mater. Res. Soc. Proc. 133., Pittsburgh, PA 1989) pp. 1722.Google Scholar
6. Singh, Prabhakar P., Asta, M., de Fontaine, D. and van Schilfgaarde, M., in Alloy PhaseStability and Design, edited by Stocks, G.M., Pope, D.P. and Giamei, A.G. (Mater. Res. Soc. Proc. 186, Pittsburgh, PA 1991) pp. 4146.Google Scholar
7. Asta, M., Wolverton, C., de Fontaine, D. and Dreyessé, H. Phys. Rev. B 44, 4907 (1991).Google Scholar
8. Kikuchi, R., Phys., Rev. 81, 988 (1951); Sanchez, J. M., Ducastelle, F. and Gratias, D., Physica 128A. 334 (1984)..Google Scholar
9. Sanchez, J. M. and de Fontaine, D., Phys. Rev. B 17, 2926 (1978).Google Scholar
10. Gratias, D., Sanchez, J.M. and de Fontaine, D., Physica 113A, 315 (1982).Google Scholar
11. McCormack, R., Asta, M., de Fontaine, D. and Ceder, G., submitted to Phys. Rev. B.Google Scholar
12. Kattner, U.R., Lin, J.-C. and Chang, Y.A., Met. Trans. A 23A, 2081 (1992).Google Scholar
13. Kubaschewski, O. and Dench, W. A., Acta Metall. 3, 339 (1955); Kubaschewski, O. and Heymer, G., Trans. Faraday Soc. 56, 473 (1960).Google Scholar
14. Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).Google Scholar
15. Loiseau, A., Van Tendeloo, G., Portier, R. and Ducastelle, F., J. Physique 46, 595 (1985).Google Scholar
16. Schuster, J.C. and Ipser, H., Z. Metallkd. 81, 389 (1990).Google Scholar
17. Hong, T., Watson-Yang, T. J., Freeman, A. J., Oguchi, T. and Xu, Jian-hua, Phys. Rev. B 41, 12462 (1990).Google Scholar
18. Singh, Prabhakar P., de Fontaine, D. and Gonis, A., Phys. Rev. B 44, 8578 (1991).Google Scholar
19. Asta, M. and Singh, Prabhakar P., 1992 (unpublished).Google Scholar
20. Fu, C.L., J. Mater. Res. 5, 971 (1990).Google Scholar
21. de Fontaine, D. and Kulik, J., Acta Metall. 33, 145 (1985).Google Scholar
22. Raman, A., Schubert, K., Z. Metallk. 56, 40 and 99 (1965); Virdis, P., Zwicker, U., Z. Metallk. 62, 46 (1971); H. Mabuchi, K. Hirakawa, H. Tsuda, Y. Nakayama, Scripta Met. 24, 505 (1990); H. Mabuchi, K. Hirukawa, Y. Nakayama, Scripta Met. 23, 1761 (1989)Google Scholar
23. Mazdiyashi, S., Miracle, D.B., Dimiduk, D.M., Mendiratta, M.G., and Subramanian, P.R., Scripta Met. 23, 327331 (1989).Google Scholar
24. Perepezko, J.H., Chang, Y.A., Seitzman, L.E., Lin, J.C., Bonda, N.R., Jewett, T.J., and Mishurda, J.C., in High Temperature Aluminides and Intermetallics. edited by Whang, S.H.. Liu, C.T., Pope, D.P., and Stiegler, J.O. (Min., Met. and Met. Soc., 1990), and references therein.Google Scholar
25. Laks, D.B., Ferreira, L.G., Froyen, S. and Zunger, A., submitted to Phys. Rev. B.Google Scholar