Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T19:52:40.900Z Has data issue: false hasContentIssue false

First principles study of defects in solid electrolyte lithium thiophosphate Li7P3S11

Published online by Cambridge University Press:  21 September 2011

Ka Xiong*
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Weichao Wang
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Roberto Longo Pazos
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Kyeongjae Cho*
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA Physics Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Get access

Abstract

We investigate the electronic structure of interstitial Li and Li vacancy in Li7P3S11 by first principles calculations. We find that Li7P3S11 is a good insulator with a wide band gap of 3.5 eV. We find that the Li vacancy and interstitial Li+ ion do not introduce states in the band gap hence they do not deteriorate the electronic properties of Li7P3S11. The calculated formation energies of Li vacancies are much larger than those of Li interstitials, indicating that the ion conductivity may arise from the migration of interstitial Li.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minami, T., Tatsumisago, M., Wakihara, M., Iwakura, C., Kohjiya, S., and Tanaka, I., “Solid state ionics for batteres”, Springer-Verlag, Tokyo (2005).Google Scholar
2. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A., and Evans, C. D., Solid State Ionics 135, 33 (2000).Google Scholar
3. Bates, J. B., Dudney, N. J., Gruzalski, G. R., Zuhr, R. A., Choudhury, A., Luck, D. F., and Robertson, J. D., Solid State Ionics 5356, 647 (1992).Google Scholar
4. Wang, B., Chakoumakos, B. C., Sales, B. C., Kwak, B. S., Bates, J. B., J. Solid State Chem. 115, 313 (1995).Google Scholar
5. Yu, X., Bates, J. B., Jellison, J. G. E., and Hart, F. X., J. Electrochem. Soc. 144, 524 (1997).Google Scholar
6. Dudney, N. J., Interface 17, 44 (2008).Google Scholar
7. Hayashi, A., Minami, K., and Tatsumisago, M., J. Solid State Electrochem. 14, 1761 (2010).Google Scholar
8. Hayashi, A., Minami, K., Tasumisago, M., J. Non-crystalline Solids 355, 1919 (2009).Google Scholar
9. Mizuno, F., Hayashi, A., tadanaga, K., Tatsumisago, M., Adv. Mater. 17, 918 (2005).Google Scholar
10. Tatsumisago, M., Hayashi, A., J. Non-crystalline Solids 354, 1411 (2008).Google Scholar
11. Hayashi, A., Minami, K., Mizuno, F., Tatsumisago, M., J.Mater. Sci. 43, 1885 (2008).Google Scholar
12. Mizuno, F., Hayashi, A., Tadanaga, K., and Tatsumisago, M., Solid State Ionics 177, 2721 (2006).Google Scholar
13. Yamane, H., Shibata, M., Shimane, Y., Junke, T., Seino, Y., Adams, S., Minami, K., Hayashi, A., and Tatsumisago, M., Solid State Ionics 178, 1163 (2007).Google Scholar
14. Holzwarth, N. A. W., Lepley, N. D., and Du, Y. A., J. Power Sources, inpress.Google Scholar
15. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
16. Heyd, J., Scuseria, G. E., Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).Google Scholar