Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T19:00:05.914Z Has data issue: false hasContentIssue false

A Figure of Merit for Transparent Conducting Nanotube Films

Published online by Cambridge University Press:  31 January 2011

Aron Pekker
Affiliation:
pekkera@szfki.hu, Research Institute for Solid State Physics and Optics, Budapest, Hungary
Katalin Kamaras
Affiliation:
kamaras@szfki.hu
Norbert Nemes
Affiliation:
nmnemes@fis.ucm.es, Universidad Complutense de Madrid, 2GFMC. Dpto. Fisica Aplicada III, Madrid, Spain
Mar Garcia-Hernandez
Affiliation:
marmar@icmm.csic.es, Instituto de Ciencia de Materiales de Madrid, Cantoblanco, Spain
Get access

Abstract

We propose a wavelength-dependent figure of merit for transparent conducting nanotube networks, composed of the sheet resistance and the optical density. We argue that this would be more useful than previous suggestions, because it relies on more realistic assumptions regarding the optical parameters of real nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gruner, G., J. Mater. Chem. 16, 3533 (2006).Google Scholar
2. Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S. J. and Rinzler, A. G., Nano Lett. 4, 911 (2004).Google Scholar
3. Saran, N., Parikh, K., Suh, D. S., Muñoz, E., Kolla, H. and Manohar, S. K., J. Am. Chem. Soc. 126, 4462 (2004).Google Scholar
4. Hu, L., Hecht, D. S. and Grüner, G., Nano Lett. 4, 2513 (2004).10.1021/nl048435yGoogle Scholar
5. Fraser, D. B. and Cook, H. D., J. Electrochem. Soc. 119, 1368 (1972).Google Scholar
6. Haacke, G., J. Appl. Phys. 47, 4086 (1976).Google Scholar
7. Tinkham, M., Introduction to superconductivity (Courier Dover Publications, Mineola, NY, 2004).Google Scholar
8. Pekker, Á., Borondics, F., Kamarás, K., Rinzler, A. G. and Tanner, D. B., Phys. Stat. Sol. (b) 243, 3485 (2006).Google Scholar
9. Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamarás, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F. and Rinzler, A. G., Science 305, 1273 (2004).Google Scholar
10. Green, A. A. and Hersam, M. C., Nano Lett. 8, 1417 (2008).Google Scholar
11. Kamarás, K., Pekker, Á., Bruckner, M., Borondics, F., Rinzler, A. G., Tanner, D. B., Itkis, M. E., Haddon, R. C., Tan, Y. and Resasco, D. E., Phys. Stat. Sol. (b) 245, 2229 (2008).10.1002/pssb.200879647Google Scholar
12. Hennrich, F., Wellmann, R., Malik, S., Lebedkin, S. and Kappes, M. M., Phys. Chem. Chem. Phys. 5, 178 (2003).Google Scholar
13. Itkis, M. E., Niyogi, S., Meng, M. E., Hamon, M. A., Hu, H. and Haddon, R. C., Nano Lett. 2, 155 (2002).Google Scholar
14. Borondics, F., Kamarás, K., Nikolou, M., Tanner, D. B., Chen, Z. and Rinzler, A. G., Phys. Rev. B 74, 045431 (2006).Google Scholar