Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T04:32:45.160Z Has data issue: false hasContentIssue false

Ferromagnetism in undoped semiconductors

Published online by Cambridge University Press:  23 June 2011

Yandong Ma
Affiliation:
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R.China
Ying Dai*
Affiliation:
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R.China
Baibiao Huang
Affiliation:
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R.China
*
Get access

Abstract

The so-called “d0” magnetism observed in semiconductors, which is not caused by partially filled d orbitals, has challenged our conventional understanding on the origin of magnetism. One class of semiconductor materials showing d0 ferromagnetism is undoped oxides and nitrides. Here, we review the ferromagnetic properties of undoped GaN and MgO based on our recent investigations. It is revealed that the room-temperature ferromagnetism originates from the anion dangling bonds associated with the surface cation-vacancies. And the magnetism of ferromagnetic coupling between the vacancy induced local magnetic moment by through-bond spin polarization in undoped semiconductors is reviewed according to our works.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000).Google Scholar
2. Jungwirth, T., Sinova, J., Mašek, J., Kušera, J. and Mac Donald, A. H., Rev. Mod. Phys. 78, 809 (2006).Google Scholar
3. Coey, J. M. D., Solid State Sci. 7, 660 (2005).Google Scholar
4. Zhou, S., Xu, Q., Potzger, K., Talut, G., Grötzschel, R., Fassbender, J., Vinnichenko, M., Grenzer, J., Helm, M., Hochmuth, H., Lorenz, M., Grundmann, M. and Schmidt, H., Appl. Phys. Lett. 93,232507 (2008).Google Scholar
5. Elfimov, I. S., Rusydi, A., Csiszar, S. I., Hu, Z., Hsieh, H. H., Lin, H.-J., Chen, C. T., Liang, R. and Sawatzky, G. A., Phys. Rev. Lett. 98, 137202 (2007).Google Scholar
6. Gu, B., Bulut, N., Ziman, T., and Maekawa, S., Phys. Rev. B 79, 024407 (2009).Google Scholar
7. Yang, K., Dai, Y., Huang, B. B. and Whangbo, M.-H., Appl. Phys.Lett. 93, 132507 (2008).Google Scholar
8. Yang, K., Dai, Y. and Huang, B. B., Chem. Phys. Lett. 481, 99 (2009).Google Scholar
9. Kenmochi, K., Seike, M., Sato, K., Yanase, A. and Katayama-Yoshida, H., J. J. Appl. Phys. 43, L934 (2004).Google Scholar
10. Kenmochi, K., Dinh, VA., Sato, K., Yanase, A. and Katayama-Yoshida, H., J. Phys. Soc. J. 73, 2952 (2004).Google Scholar
11. Peng, X. and Ahuja, R., Appl. Phys. Lett. 94, 102504 (2009).Google Scholar
12. Pan, H., Yi, J. B., Shen, L., Wu, R. Q., Yang, J. H., Lin, J. Y., Feng, Y. P., Ding, J., Van, L. H. and Yin, J. H., Phys. Rev. Lett. 99, 127201 (2007).Google Scholar
13. Venkatesan, M., Fitzgerald, C. B. and Coey, J. M. D., Nature 430, 630 (2004).Google Scholar
14. Pemmaraju, C. D. and Sanvito, S., Phys. Rev. Lett. 94, 217205 (2005).Google Scholar
15. Elfimov, I. S., Yunoki, S. and Sawatzky, G. A., Phys. Rev. Lett. 89, 216403 (2002).Google Scholar
16. Hong, N. H., Poirot, N. and Sakai, J., Phys. Rev. B 77, 033205 (2008).Google Scholar
17. Hu, J., Zhang, Z., Zhao, M., Qin, H. and Jiang, M., Appl. Phys. Lett. 93, 192503 (2008).Google Scholar
18. Madhu, C., Sundaresan, A. and Rao, C. N. R., Phys. Rev. B 77, 201306 (2008).Google Scholar
19. Wang, F. G., Pang, Z. Y., Lin, L., Fang, S., Dai, Y. and Han, S. H., Phys. Rev. B 81, 134401(2010).Google Scholar
20. Yang, K., Dai, Y., Huang, B. B. and Feng, Y. P., Phys. Rev. B 81, 033202 (2010).Google Scholar
21. Peng, H., Li, J., Li, S.-S. and Xia, J.-B., Phys. Rev. B 79, 092411 (2009).Google Scholar
22. Jin, H., Dai, Y., Huang, B. B. and Whangbo, M.-H., Appl. Phys. Lett . 94, 162505 (2009).Google Scholar
23. Wang, F., Pang, Z., Lin, L., Fang, S., Dai, Y. and Han, S., Phys. Rev. B 80, 144424 (2009).Google Scholar
24. Dev, P., Xue, Y., and Zhang, P., Phys. Rev. Lett. 100, 117204 (2008).Google Scholar
25. Larson, P. and Satpathy, S., Phys. Rev. B 76, 245205 (2007).Google Scholar
26. Zhang, Z. K., Dai, Y., Huang, B. B. and Whangbo, M.-H., Appl. Phys. Lett. 96, 062505, (2010).Google Scholar
27. Kan, E. J., Xiang, H. J., Wu, F., Tian, C., Lee, C., Yang, J. L. and Whangbo, M.-H., Appl. Phys. Lett. 97, 122503 (2010)Google Scholar
28. D Ma, Y., Dai, Y. and Huang, B. B., Appl. Surf. Sci. (2011) (accepted).Google Scholar
29. Ma, Y. D., Dai, Y., Guo, M., Niu, C. N., Yu, L. and Huang, B. B., Nanoscale, DOI:10.1039/C1NR10167F, (2011).Google Scholar