Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T08:30:53.468Z Has data issue: false hasContentIssue false

Ferroelectricity in Strategically Synthesized Pb-free LiNbO3-type ZnSnO3 Nanostructure Arrayed Thick Films

Published online by Cambridge University Press:  24 February 2015

Anuja Datta
Affiliation:
Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Devajyoti Mukherjee
Affiliation:
Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA Center for Integrated Functional Materials & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Corisa Kons
Affiliation:
Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Sarath Witanachchi
Affiliation:
Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA Center for Integrated Functional Materials & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Pritish Mukherjee
Affiliation:
Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA Center for Integrated Functional Materials & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Get access

Abstract

We report the evidence of ferroelectricity from LN-type ZnSnO3 nanostructure arrayed thick films (10 - 20 µm) on Si with remanent polarization value as high as ≈ 30 µC/cm2 in nanowire arrays. A combined pulsed-laser deposition (PLD) technique and a solvothermal synthesis scheme was adopted to effectively synthesize the nanostructured samples assisted by conducting ZnO template-layers. The similar crystal symmetry and comparable lattice parameter between ZnO and LN-type ZnSnO3 facilitated the dense growth of high-quality ZnSnO3 nanostructure arrays in the form of one-dimensional vertical nanowires, nanorods and two-dimensional nanoflakes. The strategic synthesis method allowed controlled tunability of the morphology, crystallinity, and packing density of ZnSnO3 nanostructures, which in turn facilitated the measurement of ferroelectric (FE) properties using a simple sandwich-device geometry. Analyses of the FE properties in relation to the structures are presented and their potential for designing future Pb-free FE devices for non-volatile memory applications is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xu, S., Hansen, B. J., and Wang, Z. L., Nat Commun. 2010 Oct 19;1:93. doi: 10.1038/ncomms1098.CrossRefGoogle Scholar
Izyumskaya, N., Alivov, Y. -I., Cho, S. -J., Morkoç, H., Lee, H., and Kang, Y. -S., Critical Rev. Solid State Mater. Sci. 32, 111 (2007).CrossRefGoogle Scholar
Benedek, N. A., Fennie, C. J., J. Phys. Chem. C 117, 13339 (2013).CrossRefGoogle Scholar
Inaguma, Y., Aimi, A., Shirako, Y., Sakurai, D., Mori, D., Kojitani, H., Akaogi, M., and Nakayama, M., J. Am. Chem. Soc. 136, 2748 (2014).CrossRefGoogle Scholar
Uchinoin, K., ‘‘ch. 10: Present status of piezoelectric/electrostrictive actuators and remaining problems’’; Piezoelectric Actuators and Ultrasonic Motors, ed. Tuller, H. L.. (Kluwer Academic Publishers, Boston, 1997).Google Scholar
Datta, A., Mukherjee, D., Witanachchi, S., and Mukherjee, P., Adv. Funct. Mater. 24, 2638 (2014).CrossRefGoogle Scholar
Datta, A., Mukherjee, D., Kons, C., Witanachchi, S., and Mukherjee, P., Small 10, 4093 (2014).Google Scholar
Inaguma, Y., Yoshida, M., and Katsumata, T., J. Am. Chem. Soc. 130, 6704 (2008).CrossRefGoogle Scholar
Gou, H., Gao, F., and Zhang, J., Comp. Mater. Sci. 49, 552 (2010).CrossRefGoogle Scholar
Zhang, J., Yao, K. L., Liu, Z. L., Gao, G. Y., Sun, Z. Y., and Fan, S. W., Phys. Chem. Chem. Phys. 12, 9197 (2010).CrossRefGoogle Scholar
Halasyamani, P. S., and Poeppelmeier, K. R., Chem. Mater. 10, 2753 (1998).CrossRefGoogle Scholar
Navrotsky, A., Chem. Mater. 10, 2787 (1998).CrossRefGoogle Scholar
Son, J. Y., Lee, G., Jo, M.-H., Kim, H., Jang, H. M., and Shin, Y.-H., J. Am. Chem. Soc. 131, 8386 (2009).10.1021/ja903133nCrossRefGoogle Scholar
Wu, J. M., Xu, C., Zhang, Y., and Wang, Z. L., ACS Nano 6, 4335 (2012).CrossRefGoogle Scholar
Wu, J. M., Chen, C.Y., Zhang, Y., Chen, K.-H., Yang, Y., Hu, Y. Jr., He, H., and Wang, Z. L., ACS Nano 6, 4369 (2012).CrossRefGoogle Scholar
Wu, J. M., Xu, C., Zhang, Y., Yang, Y., Zhou, Y., and Wang, Z. L., Adv Mater. 27, 6094 (2012).CrossRefGoogle Scholar
Lee, K. Y., Kim, D., Lee, J. H., Kim, T. Y., Gupta, M. K., and Kim, S. W., Adv. Funct. Mater. 24, 37 (2014).CrossRefGoogle Scholar
Mukherjee, D., Datta, A., Kons, C., Hordagoda, M., Witanachchi, S., and Mukherjee, P., Appl. Phys. Lett. (accepted).Google Scholar