Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T08:47:00.633Z Has data issue: false hasContentIssue false

FERROELECTRIC THIN FILM SYSTEM IN PACKAGE DEVICES WITH INTEGRATED CAPACITORS OF 100 nF/mm2 & BREAKDOWN VOLTAGES OF 90 V

Published online by Cambridge University Press:  01 February 2011

Mareike Klee
Affiliation:
mareike.klee@philips.com, Philips Research Eindhoven, Group System in Package, HighTech Campus 3, Eindhoven, N/A, Netherlands
Wilco Keur
Affiliation:
wilco.keur@philips.com, Philips Research Eindhoven, HighTech Campus 4, Eindhoven, 5656AE, Netherlands
Ruediger Mauczok
Affiliation:
ruediger.mauczok@philips.com, Philips Research Eindhoven, HighTech Campus 4, Eindhoven, 5656AE, Netherlands
Aarnoud Roest
Affiliation:
aarnoud.roest@nxp.com, NXP Semiconductors / Corporate I&T / Research, Eindhoven, 5656AE, Netherlands
Klaus Reimann
Affiliation:
klaus.reimann@nxp.com, NXP Semiconductors / Corporate I&T / Research, Eindhoven, 5656AE, Netherlands
Linda Peters
Affiliation:
linda.peters@nxp.com, NXP Semiconductors / Corporate I&T / Research, Eindhoven, 5656AE, Netherlands
Kai Neumann
Affiliation:
kai.neumann@nxp.com, NXP Semiconductors, Hamburg, 22529, Netherlands
Rainer Kiewitt
Affiliation:
rainer.kiewitt@philips.com, Philips Research Aachen, Aachen, 52066, Germany
Get access

Abstract

Thin film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100 nF/mm2 and breakdown voltages of up to 90 V have been achieved. The integration of these high density capacitors with extremely high breakdown voltage is a revolution in the world of integrated passive components and has not yet been achieved in any other passive integration technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Balaraman, D., J. Electroceramics, Vol. 13, 95100 (2004).Google Scholar
2. Laughlin, B., Ihlefeld, J., and Maria, J.-P., J. Am. Ceram. Soc., Vol. 88, 26522654 (2005)Google Scholar
3. Wu, J., Anderson, M., Coller, D., Guth, G., Proc. ICEPT, 484490 (2003)Google Scholar
4. Klee, M., Kiewitt, R., Straten, F. van, Lok, P., Löbl, P., Brand, W., Integrated Ferrroelectrics, Vol. 36, 201, 2001 Google Scholar
5. Klee, M., Loebl, P., Kiewitt, R., Brand, W., Oppen, P. van, Lok, P., Mat. Res. Soc. Proc. Vol. 596, 463468 (2000)Google Scholar
6. Klee, M., Beelen, D., Keur, W., Kiewitt, R., Kumar, B., Mauczok, R., Reimann, K., Renders, Ch., Roest, A., Roozeboom, F., Steeneken, P., Tiggelman, M., Vanhelmont, F., Wunnicke, O., Lok, P., Neumann, K., Fraser, J. and Schmitz, G., IEEE Proceedings of the International Symposium on Applications of Ferroelectrics, 9, 2006 Google Scholar
7. Klee, M., Mackens, U., Kiewitt, R., Greuel, G., Metzmacher, C., Philips Journal of Research, 51, 363387, (1998)Google Scholar
8. Jain, P. et al. , IEEE TAP, vol. 25, p454, 2002.Google Scholar
9. McPherson, J.W. et al. , IEEE TED, vol. 50, p1771, 2003.Google Scholar
10. Minford, W., IEEE Trans. Components, Hybrids Man. Fact. Technology CHMT – 5, 297300 (1982)Google Scholar
11. Waser, R. et al. , J. Am Ceram. Soc. 73, 1645 (1990).Google Scholar
12. Bouyssou, E., Guégan, G., Bruyère, S., Pezzani, R., Berneux, L., Morais, L. Dantas de, Rebrassé, J.-P., Morais, de, Rebrassé, J.-P., Anceau, C., and Nopper, C., IEEE 45th annual International Reliability Physics Symposium, Phoenix, pp.433438, 2007.Google Scholar
13. Pervez, N.K., Hansen, P. J., and York, R. A., IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, pp. 278280, 2004.Google Scholar