Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T18:46:37.425Z Has data issue: false hasContentIssue false

Ferroelectric and Fatigue Properties of Alkoxy-Derived CaBi2Ta2O9 Thin Films

Published online by Cambridge University Press:  21 March 2011

Kazumi Kato
Affiliation:
National Industrial Research Institute of Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462-8510, Japan, kzmkato@nirin.go.jp Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503, Japan
Kazuyuki Suzuki
Affiliation:
National Industrial Research Institute of Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462-8510, Japan
Kaori Nishizawa
Affiliation:
National Industrial Research Institute of Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462-8510, Japan
Takeshi Miki
Affiliation:
National Industrial Research Institute of Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462-8510, Japan
Get access

Abstract

CaBi2Ta2O9 (CBT) thin films were successfully prepared on Pt-passivated quartz glass substrates using a triple-alkoxide solution. The thin film crystallized to a single phase of perovskite at 750°C via a mixture of fluorite and perovskite phases. The 750°C-annealed thin film showed random orientation and consisted of fine grains with a diameter of about 80 nm. The dielectric constant and loss factor were 124 and 0.04, respectively, and were constant in the frequency range of 10 kHz to 1 MHz. The thin film exhibited P-E hysteresis loops at relatively high voltages. The remanent polarization and coercive electric field were 6.9 μC/cm2 and 170 kV/cm at 13 V, respectivey. The fatigue behaviors against various electric pulse sequences were examined. The polarization did not change when the pulse width was short such as 10-6 s, however, it increased gradually with number of switching cycles when the pulse width was relatively long such as 10-3 s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ismailzade, I. G., Bull. Acad. Sci. USSR, Phys. Ser., 24, p. 1,201 (1960).Google Scholar
2. Araujo, C. A-Paz de, Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature, 374, p. 627 (1995).10.1038/374627a0Google Scholar
3. Smolenskii, G. A., Isupov, V. A. and Agranovskaya, A. I., Sov. Phys. Solid State, 3, p. 651 (1961).Google Scholar
4. Kato, K., Mat. Res. Soc. Symp. Proc., 596, p. 167 (2000).10.1557/PROC-596-167Google Scholar
5. Kato, K., Suzuki, K., Nishizawa, K. and Miki, T., J. Appl. Phys., 88, p. 3,779 (2000).10.1063/1.1290257Google Scholar
6. Kato, K., Suzuki, K., Nishizawa, K. and Miki, T., Jpn. J. Appl. Phys., 39, p. 5,501 (2000).Google Scholar
7. Kato, K., Zheng, C.. Dey, S. K. and Torii, Y., Integr. Ferroelectr., 18, p. 225 (1997).10.1080/10584589708221701Google Scholar
8. Kato, K., Finder, J. M., Dey, S. K. and Torii, Y., Integr. Ferroelectr., 18, p. 237 (1997).10.1080/10584589708221702Google Scholar
9. Kato, K., Zheng, C., Finder, J. M., Dey, S. K. and Torii, Y., J. Am. Ceram. Soc., 81, p. 1,869 (1998).10.1111/j.1151-2916.1998.tb02559.xGoogle Scholar
10. Kato, K., Integr. Ferroelctr., 22, p. 13 (1998).10.1080/10584589808208025Google Scholar
11. Kato, K., Jpn. J. Appl. Phys., 37, p. 5,178 (1998).10.1143/JJAP.37.5178Google Scholar
12. Kato, K., Integr. Ferroelctr., 26, p. 243 (1999).10.1080/10584589908215625Google Scholar
13. Kato, K., Jpn. J. Appl. Phys., 38, p. 5,417 (1999).10.1143/JJAP.38.5417Google Scholar
14. Nishida, T., Takaoka, M., Okamura, S. and Shiosaki, T., Abstract of 12 th Int. Symp. Integr. Ferroelectr., p. 57 (2000).Google Scholar