Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T22:08:00.821Z Has data issue: false hasContentIssue false

Fermi-Level Effect and Junction Carrier Concentration Effect on Boron Distribution in GexSil−x/Si Heterostructures

Published online by Cambridge University Press:  10 February 2011

CHang-Ho Chen
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
Ulrich M. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
Teh Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
Get access

Abstract

Dopant segregation mechanism in general involves the chemical effect, the Fermi-level effect, and the effect of the junction carrier concentrations. Satisfactory fits of available B distribution profiles in GexSil−x/Si heterostructures have been obtained using such a model, but with the chemical effect not important. The Fermi-level effect determines the difference in the ionized B solubilities in GexSil−x and Si. The singly-positively charged crystal self-interstitials I+ governs the boron diffusion process. The junction carrier concentration affects the concentration of I+ and solubility of B in the region and hence controls B diffusion across the heterojunction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., Jacowitz, R. J., and Kamins, T. I., Appl. Phys. Lett. 62, 612 (1993).Google Scholar
2. Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., Jacowitz, R. J., and Lefforge, D., Mater. Res. Soc. Sym. Proc. 379 (1995) p. 373.Google Scholar
3. Fang, W. T., Griffin, P. B., and Plummer, J. D., Mater. Res. Soc. Sym. Proc. 379 (1995) p. 379.Google Scholar
4. Lever, R. F., Bonar, J. M., and Willoughby, A. F. W., J. Appl. Phys. 83, 1988 (1998).Google Scholar
5. Patton, G. L., Comfort, J. H., Meyerson, B. S., Grabbe, E. F., Scilla, G. J., Fresart, E. de, Stork, J. M. C., Sun, J. Y. C., Harrame, D. L., and Burghartz, J. N., IEEE Electron Device Lett. EDL-11, 171 (1990).Google Scholar
6. Prinz, E. J. and Sturm, J. C., IEEE Electron Device Lett. EDL-12, 42 (1991).Google Scholar
7. Chen, C.-H., Gösele, U. M., and Tan, T. Y., this volume.Google Scholar
8. Fair, R. B. and Pappas, P. N., J. Electrochem. Soc. 122, 1241 (1975).Google Scholar
9. Fair, R. B., in Impurity and Doping Processes in Silicon , edt. Wang, F. F. Y. (North Holland, NY, 1981), Chap. 7.Google Scholar
10. Tan, T. Y. and Gosele, U., Appl. Phys. A37, 1 (1985).Google Scholar
11. Watkins, G. D., Phys. Rev. B 12, 5824 (1975).Google Scholar
12. You, H.-M., Gosele, U. M. and Tan, T. Y.: J. Appl. Phys. 74, 2461 (1993).Google Scholar
13. Jtingling, W., Pichler, P., Selberherr, S., Guerrero, E., and Pibtzl, H. W., IEEE Trans. Electron. Devices ED-32, 156 (1985).Google Scholar
14. Sharma, B. L., Defect and Diffusion Forum 70–71, 102 (1990).Google Scholar
15. Moriya, N., Feldman, L. C., Luftman, H. S., King, C. A., Bevk, J., and Freer, B., Phys. Rev. Lett. 71, 883 (1993).Google Scholar