Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T11:07:39.376Z Has data issue: false hasContentIssue false

Femtosecond Time Domain Techniques for Characterization of Linear and Nonlinear Optical Properties in GaAs Waveguides

Published online by Cambridge University Press:  21 February 2011

K. K. Anderson
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
M. J. Lagasse
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
H. A. Haus
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
J. G. Fujimoto
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Femtosecond time domain measurements can provide a powerful approach for characterizing both the nonlinear as well as linear optical properties of waveguide devices. We describe a new time division interferometry technique to perform direct measurements of the nonresonant nonlinear index of refraction in AIGaAs waveguides. In addition, femtosecond time of flight measurements permit linear properties such as absorption and dispersion to be characterized using time domain techniques. These techniques permit a comprehensive characterization of linear and nonlinear waveguide properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koch, S. W., Peyghambarian, N., and Gibbs, H. M., J. Appl. Phys. 63, R1 (1989).Google Scholar
2. Stegeman, G. I., Wright, E. M., Finlayson, N., Zanoni, R., and Seaton, C. T., J. Lightwave Tech. 6, 953 (1988).Google Scholar
3. Burns, W. K., and Bloembergen, N., Phys. Rev. B 4, 3437 (1971).Google Scholar
4. Wa, P. Li Kam, Sitch, J. E., Mason, N. J., Roberts, J. S., and Robson, P. N., Electron. Lett. 21, 27 (1985).Google Scholar
5. Jin, R., Chuang, C. L., Gibbs, H. M., Koch, S. W., Polky, J. N., and Pubanz, G. A., Appl. Phys. Lett. 53, 1791 (1988).Google Scholar
6. Lee, Y. H., Chavez-Pirson, A., Koch, S. W., Gibbs, H. M., Park, S. H., Morhange, J., Jeffery, A., Peyghambarian, N., Banyai, L., Gossard, A. C., and Wiegmann, W., Phys. Rev. Lett. 51, 2446 (1986).Google Scholar
7. Olbright, G. R., and Peyghambarian, N., Appl. Phys. Lett. 48, 1184 (1986).Google Scholar
8. Cotter, D., Ironside, C. N., Ainslie, B. J., and Girdlestone, H. P., Opt. Lett. 14, 317 (1989).Google Scholar
9. Sheik-Bahae, M., Said, A. A., and Van Stryland, E. W., Opt. Lett. 14, 955 (1989).Google Scholar
10. LaGasse, M. J., Anderson, K. K., Haus, H. A., and Fujimoto, J. G., Appl. Phys. Lett. 54, 2068 (1989).Google Scholar
11. Kafka, J. D., and Baer, T., Proc. Soc. Photo-Opt. Instum. Eng. 533, 38 (1985).Google Scholar
12. Jensen, B., and Torabi, A., J. Quant. Electron. QE–19, 877 (1983).Google Scholar
13. Moulton, P. F., J. Opt. Soc. Am. B 3, 125 (1986).Google Scholar
14. Goodberlet, J., Wang, J., Fujimoto, J. G., and Schulz, P. A., Opt. Lett. 14, 1125 (1989).Google Scholar