Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T18:38:06.712Z Has data issue: false hasContentIssue false

Femtosecond laser interactions with Co/Al multilayer films

Published online by Cambridge University Press:  01 February 2011

Yoosuf N. Picard
Affiliation:
Dept. of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2176, U.S.A. Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109–2099, U.S.A.
David P. Adams
Affiliation:
Advanced Manufacturing Processes Lab, Sandia National Laboratories, Albuquerque, NM 87185–0959, U.S.A.
Steven M. Yalisove
Affiliation:
Dept. of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2176, U.S.A. Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109–2099, U.S.A.
Get access

Abstract

Reactive multilayer films of Co and Al were irradiated using femtosecond and nanosecond pulse-length lasers. While no ignition of a self-propagation reaction occurred during the laser machining studies, we observe considerable differences in the morphology and extent of damage induced by femtosecond and nanosecond lasers. Using scanning electron microscopy, we show that single metal layers can be removed at the micron scale with negligible damage to the underlying layers using femtosecond pulse-length lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roeske, F., Benterou, J., Lee, R., Roos, E., Propellants Explosives Pyrotechnics, 28(2), 53 (2003).Google Scholar
2. Perry, M.D., Stuart, B.C., Banks, P.S., Feit, M.D., Yanovsky, V., and Rubenchik, A.M., Journal of Applied Physics, 85(9), 6803 (1999).Google Scholar
3. Picard, Y.N. et. al., Synthesis, Characterization and Properties of Energetic/Reactive Nanomaterials, 2003 MRS Fall Meeting, 387 (2004).Google Scholar
4. Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M., Powers, M., Whitener, M., Weihs, T.P., Applied Physics Letters, 81, 3987 (2003).Google Scholar
5. de Boer, F.R. et. al., Cohesion in Metals: Transition Metal Alloys, Elsevier Science Publishers B.V., (1988).Google Scholar
6. Swiston, A.J. Jr, Hufnagel, T.C., and Weihs, T.P., Scripta Materiala, 48, 1575 (2003).Google Scholar
7. Adams, D.P., Rodriguez, M., Tigges, C., to be published (2005).Google Scholar
8. Bahnisch, R., Grob, W., Menschig, A., Microelectronic Engineering, 50, 541 (2000).Google Scholar
9. Roberts, D.E., Applied Physics A, 79, 1067 (2004).Google Scholar
10. Kononeko, T.V. et. al., Applied Physics A, 79, 543 (2004).Google Scholar
11. Anisimov, S.I., Kapeliovich, B.L., Perel'man, T.L., Sov. Phys. JETP, 39, 375 (1974).Google Scholar
12. Chen, J.K., Beraun, J.E., Tham, C.L., International Journal of Engineering Science, 42 793 (2004).Google Scholar
13. Ivanov, D.S., Zhigilei, L.V., Physical Review B, 68, 064114 (2003).Google Scholar