Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T12:09:40.062Z Has data issue: false hasContentIssue false

Fate of Neptunium in an Anaerobic, Ethanogenic Microcosm

Published online by Cambridge University Press:  10 February 2011

J. E. Banaszak
Affiliation:
Department of Civil Engineering, Northwestern University, Evanston, IL 60208 Chemical Technology Division (CMT), Argonne National Lab, Argonne, IL 60439, reedd@cmt.anl.gov
S. M. Webb
Affiliation:
Department of Civil Engineering, Northwestern University, Evanston, IL 60208
B. E. Rittmann
Affiliation:
Department of Civil Engineering, Northwestern University, Evanston, IL 60208
J.-F. Gaillard
Affiliation:
Department of Civil Engineering, Northwestern University, Evanston, IL 60208
D. T. Reed
Affiliation:
Chemical Technology Division (CMT), Argonne National Lab, Argonne, IL 60439, reedd@cmt.anl.gov
Get access

Abstract

Neptunium is found predominantly as Np(IV) in reducing environments, but as Np(V) in aerobic environments. Currently, it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. To evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosm inoculated with anaerobic sediments from a metal-contaminated freshwater lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10−5 M Np did not inhibit methane production. Total Np solubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbially produced Mn(II/III) and Fe(II) may serve as electron donors for Np reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lieser, K. H. and Mühlenweg, U., Radiochimica Actt 43, 27 (1988).Google Scholar
2. Taylor, D. M., The Science of the Total Environment 83, 217 (1989).Google Scholar
3. WiLdung, R., personal communication, 1997.Google Scholar
4. Thompson, R. C., Radiation Research 90, 1 (1982).Google Scholar
5. Pratopo, R. M., Moriyama, H.. and Higashi, K., in “Proceedings of the 1989 Joint International Waste Management Conference,” Vol.2, p. 309, 1989.Google Scholar
6. Hakanen, M. and Lindberg, A.. “Technetium, Neptunium and Uranium in Simulated Anaerobic Groundwater Conditions.” YJT-95-02, Voimayhtiöiden Ydinjätetoimikunta (Nuclear Waste Commission of Finnish Power Companies), Helsinki, 1995.Google Scholar
7. Lieser, K. H., Radinchimica Acta 70/71, 355 (1995).Google Scholar
8. Silva, R. J. and Nitsche, H., Radiochimica Acta 70/71, 377 (1995).Google Scholar
9. von Gunten, H. R. and Benes, P., RadiochimicaActa 69, 1 (1995).Google Scholar
10. Francis, A. J., Journal alloys and Compounds 213/214, 226 (1994).Google Scholar
11. Francis, A. J. and Dodge, C. J., Environmental Science and Technology 24, 373 (1990).Google Scholar
12. Macaskie, L. E., lloyd, J. R., Thomas, R. A. P., and Tolley, M. R., Nuclear Energy-Journal of the British Nuclear Energy Societ 35, 257 (1996).Google Scholar
13. Banaszak, J. E., Reed, D. T., and Rittmann, B. E., Journal of Radioanalytical and Nuclear Chemistry (accepted).Google Scholar
14. Barton, L. L., Choudhury, K., Thomson, B. M., Steenhoudt, K., and Groffman, A. R., Radioactive Waste Management and Environmental Restoration 20, 141 (1996).Google Scholar
15. Choppin, G. R. and Rao, L. F., in “Transuranium Elements - A Half Century” (Morss, L. R. and Fuger, J., eds.), p. 262. American Chemical Society, Washington, DC, 1992.Google Scholar
16. Francis, A. J., Dodge, C. J., Lu, F., Halada, G. P., and Clayton, C. R., Environmental Science and Technology 28, 636 (1994).Google Scholar
17. Gorby, Y. A. and Lovley, D. R., EnvironmentalScience and Technology 26, 205 (1992).Google Scholar
18. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R., Nature 350, 413 (1991).Google Scholar
19. Lovley, D. R., Roden, E. E., Phillips, E. J. P., and Woodward, J. C., Marine Geology 113, 41 (1993).Google Scholar
20. Reed, D. T., Aase, S., Wygmans, D., and Banaszak, J. E., Radiochimico Acta (in press).Google Scholar
21. Wolin, , Journal of Biological Chemistry 238, 2882 (1963).Google Scholar
22. Murray, J.,. Journal of Colloid and Interface Science 46, 357 (1974).Google Scholar
23. Chiswell, and Halloran, , Talanta 38, 641 (1991).Google Scholar
24. Stookey, , Analytical Chemistr, 42, 779 (1970).Google Scholar
25. Dryssen, D. and Sillen, L.G., Tellus 19, 113 (1967).Google Scholar
26. Conradson, S. D., Applied Spectroscopy 52, 252A (1998).Google Scholar
27. Konigsberger, D. C. and Prins, R. (eds.), “X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANLS.” John Wiley and Sons, New York, 1988.Google Scholar
28. Lovley, D. R., Annuil Review of Microbiology 47, 263 (1993).Google Scholar
29. Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., and Siegel, D. I., Nature 339, 297 (1989).Google Scholar
30. Nealson, K. H. and Saffarini, D., Annual Reviews in Microbioloky 48, 311 (1994).Google Scholar
31. Myers, C. R. and Nealson, K. H., Science 240, 1319 (1988).Google Scholar
32. Lovley, D. R., Microbiological Reviews 55, 259 (1991).Google Scholar
33. Stumm, W. and Morgan, J. J., “Aquatic Chemistry,” p. 1022. John Wiley & Sons, Inc., New York, 1996.Google Scholar
34. Zajic, J. E., “Microbial Biogeochemistry,” p. 345. Academic Press, New York, 1969.Google Scholar
35. Fahey, J. A., in “The Chemistry of the Actinide Elements” (Katz, J. J., Seaborg, G. T., and Morss, L. R., eds.), Vol.1, p. 443. Chapman and Hall, New York, 1986.Google Scholar
36. Nakayama, S., Yamaguchi, T., and Sekine, K., Radiochimica Acta 74, 15 (1996).Google Scholar
37. Girvin, D. C., Ames, L. L., Schwab, A. P., and McGarrah, J. E., Journal of Colloidand InterfacialScience 141, 67(1991).Google Scholar
38. Triay, I. R., Cotter, C. R., Huddleston, M. H., Leonard, D. E., Weaver, S. C., Chipera, S. J., Bish, D. L., Meijer, A., and Canepa, J. A., “Batch Sorption Results for Neptunium Transport through Yucca Mountain Tuffs.” LA-12961-MS, Los Alamos National Laboratory, Los Alamos, 1996.Google Scholar
39. Tochiyama, O., Yamazaki, H., and Mikami, T., Radiochimica Acta 73, 191 (1996).Google Scholar
40. Clark, D. L., Conradson, S. D., Ekberg, S. A., Iless, N. J., Janecky, D. R., Neu, M. P., Palmer, P. C., and Tait, C. D., New Journal of Chemistrv 20, 211 (1996).Google Scholar
41. Clark, D. L., Conradson, S. D., Ekberg, S. A., Hess, N. J., Neu, M. P., Palmer, P. D., Runde, W., and Tait, C. D., Journal oIf the American Cheroical Society 118, 2089 (1996).Google Scholar
42. Neck, V., Runde, W., Kim, J. I., and Kanellakopulos, B., Radiochimica Acta 65, 29 (1994).Google Scholar
43. Bidoglio, G., Tanet, G., and Chatt, A., Radiochimica Acta 38, 21 (1985).Google Scholar
44. Runde, W., Neu, M. P., and Clark, D. L., Geochimica et Cosmochimica Acta 60, 2065 (1996).Google Scholar
45. T, Camell, W.. and Crosswhite, H. M., in “The Chemistry of the Actinide Elements” (Katz, J. J., Seaborg, G. T., and Morss, L. R., eds.), Vol.2, p. 1235. Chapman and Hall, New York, 1986.Google Scholar
46. Yaozhong, C., Bingmei, T., and Zhangji, L., Radiochimica Acta 62, 199 (1993).Google Scholar
47. Lieser, K. H., Cheinikcr-Zig. 110, 215 (1986).Google Scholar
48. Lienemann, C.-P., Taillefert, M., Perret, D., and Gaillard, J.-F., Geochimica cosmochimica Acta 61, 1437 (1997).Google Scholar