Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T13:33:39.789Z Has data issue: false hasContentIssue false

Fast Etching of Amorphous and Microcrystalline Silicon by Hot-Filament Generated Atomic Hydrogen

Published online by Cambridge University Press:  15 February 2011

H. N. Wanka
Affiliation:
University Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
M. B. Schubert
Affiliation:
University Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

A hot tungsten wire effectively dissociates H2 into atomic hydrogen and thereby facilitates etching and hydrognation of silicon. Hot filament generated atomic hydrogen etches amorphous silicon (a-Si:H) at a rate of up to 27 Å/s and microcrystalline (μc) Si at rates up to 20 Å/s. A large laminar gas flow is the key to high etch rates. It provides for a fast transport of the etch products out of the reaction zone and thereby avoids redeposition. The etch rate increases with pressure and with H2 gas flow. Likewise, the etch rate rises with the filament temperature and saturates at a filament temperature of approximately 2150°C when approaching the maximum H2 dissociation probability. The decrease of the etch rate at higher substrate temperatures is attributed to the loss of the surface coverage by atomic hydrogen. The etch selectivity between a-Si:H and μc-Si drops at elevated substrate temperatures. Boron doping decreases the etch rates both for a-Si:H and μc-Si, whereas phosphorous doping does not significantly affect it. This etch selectivity is caused by a catalytic effect of BH3 on the surface hindering the formation of the main etch product silane. Even for highest etch rates no surface roughening of a-Si:H occurs, however, a bond structure modification of the near surfaces arises, an effect which results in the formation of a nanocrystalline surface layer. The increase of the μc-Si etch rate close to the film substrate interface characterizes the film thickness at which the coalescence of the microcrystalline nuclei starts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Desmond, C.A., Hunt, C. E., and Farrens, S.N., J. Electrochem. Soc. 141, 178 (1994).Google Scholar
2. Haller, I., Lee, Y.H., Nocera, J.J. Jr, and Jaso, M.A., J. Electrochem. Soc.: Solid-State Science and Technology 135, 2042 (1988).Google Scholar
3. Okada, Y. and Wagner, S., Mat. Res. Soc. Symp. Proc. 192, 541 (1990).Google Scholar
4. Clarke, P.E., Field, D., and Klemperer, D.F., J. Appl. Phys. 67, 1525 (1990).Google Scholar
5. Baldi, L. and Beardo, D., J. Appl. Phys. 57, 2221 (1985).Google Scholar
6. Westlake, W. and Heintze, M., J. Appl. Phys. 77, 879 (1995).Google Scholar
7. Vepřek, S. and Sarott, F.-A., Plasma Chemistry and Plasma Processing 2, 233 (1982).Google Scholar
8. Otobe, M., Kimura, M., and Oda, S., Jpn. J. Appl. Phys. 33, 4442 (1994).Google Scholar
9. Mahan, A.H, Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
10. Heintze, M., Zedlitz, R., Wanka, H.N., and Schubert, M.B., J. Appl. Phys. 79, 2699 (1996).Google Scholar
11. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J., and Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
12. Middya, A.R., Guillet, J., Perrin, J., and Bouree, J.E., Mat. Res. Soc. Symp. Proc. 420, 289 (1996).Google Scholar
13. Wanka, H.N., Zedlitz, R., Heintze, M., and Schubert, M.B., Mat. Res. Soc. Symp. Proc. 420, 295 (1996).Google Scholar
14. Wiesmann, H., Ghosh, A.K., McMahon, T., and Strongin, M., J. Appl. Phys. 50, 3752 (1979).Google Scholar
15. Langmuir, I., J. Am. Chem. Soc. 34, 1310 (1912).Google Scholar
16. Smith, J.N. Jr and Fite, W.L., J. Chem. Phys. 37, 898 (1962).Google Scholar
17. An, I., Li, Y.M., Wronski, C.R., and Collins, R.W., Phys. Rev. B 48, 4464 (1993).Google Scholar
18. Nguyen, H.V., An, I., Collins, R.W., Lu, Y., Wakagi, M., and Wronski, C.R., Appl. Phys. Lett. 65, 3335 (1994).Google Scholar
19. Abrefah, J. und Olander, D.R., Surf. Sci. 209, 291 (1989).Google Scholar
20. Vepřek, S. and Mareček, V., Solid State Electron. 11, 683 (1968).Google Scholar
21. Webb, A.P. and Vepřek, S., Chem. Phys. Lett. 62, 173 (1979).Google Scholar
22. Gates, S.M., Kunz, R.R., and Greenlief, C.M, Surf. Sci. 207, 364 (1989).Google Scholar
23. Pearton, S.J., Corbett, J.W., and Shi, T.S., Appl. Phys. A 43, 153 (1987).Google Scholar
24. Santos, P.V. and Jackson, W.B., Phys. Rev. B 46, 4595 (1992).Google Scholar
25. Shirai, H., Drévillon, B., and Shimizu, I, Jpn. J. Appl. Phys. 33 Part 1, 5590 (1994).Google Scholar
26. Wanka, H.N., Aldabergenova, S., Albrecht, M., and Schubert, M.B., unpublished.Google Scholar
27. Perrin, J., Takeda, Y., Hirano, N., Takeuchi, Y., and Matsuda, A., Surf. Sci. 210, 114 (1989).Google Scholar
28. Plieninger, R., Wanka, H.N., Kühnle, J., and Werner, J.H., unpublished.Google Scholar