Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T02:56:25.423Z Has data issue: false hasContentIssue false

Factors influencing the sulphate incorporation in radioactive waste glasses

Published online by Cambridge University Press:  21 March 2011

D. Manara
Affiliation:
SCDV –Service de Confinement des Déchets et Vitrification – Laboratoire d'Etudes de Base sur les Verres, CEA Valrhô, Centre de Marcoule, 30207 Bagnols sur Cèze, France
A. Grandjean
Affiliation:
SCDV –Service de Confinement des Déchets et Vitrification – Laboratoire d'Etudes de Base sur les Verres, CEA Valrhô, Centre de Marcoule, 30207 Bagnols sur Cèze, France
O. Pinet
Affiliation:
SCDV –Service de Confinement des Déchets et Vitrification – Laboratoire d'Etudes de Base sur les Verres, CEA Valrhô, Centre de Marcoule, 30207 Bagnols sur Cèze, France
J.L. Dussossoy
Affiliation:
SCDV –Service de Confinement des Déchets et Vitrification – Laboratoire d'Etudes de Base sur les Verres, CEA Valrhô, Centre de Marcoule, 30207 Bagnols sur Cèze, France
D.R. Neuville
Affiliation:
Physique des Minéraux et des Magmas, UMR 7047 – CNRS, Institut de Physique du Globe de Paris, 7 place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

Sulphur is present in several kinds of nuclear waste destined to confinement in a glass matrix.. These species are hardly incorporated in borosilicate glasses, due to the poor miscibility of molten sulphates and glass melt at high temperature. This point constitutes one of the main technological difficulties in the current fabrication of nuclear glasses. Several studies carried out in the last two decades indicate that the liquid state miscibility of sulphates and glass melt, determining the waste incorporation in the final glass, is dependent on the composition of the glass and on the temperature and duration of its preparation. In particular, the ratios K = [SiO2] / [B2O3] and R = [Na2O] / [B2O3] (where [.] indicates the mol %), as well as the presence of V2O5 in the glass matrix play an important role in the determination of both kinetics and thermodynamics of sulphates incorporation in the vitreous matrix. In this work a study on the physico-chemical effects of the ratio R, the melt reactivity, the type of sulphate added, and the presence of V2O5 on the solubility of sulphates in borosilico-vanadate glasses is presented.

Glass samples were prepared at the laboratory scale (up to 50-100 g) by melting oxide and sulphate powders in Pt/Au or Pt/Rh crucibles at a fixed viscosity level of 100 Po in air. Several glass specimens were powdered and re-melted at 1200°C in the presence of sulphates in order to simulate conditions as close as possible to those of an industrial melter. XRF and ICP AES chemical analysis, SEM EDS and Raman spectroscopy were employed to characterise the fabricated samples. Raman spectra, in particular, reveal the structural modifications that condition the sulphate incorporation in the glass. A critical review of the obtained results is compared with the literature data, to yield a more systematic description of the mentioned factors effects on sulphate behaviour in the borosilico-vanadate / system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Conroy, A.R., Manring, W.H., Bauer, W.C., “The role of sulphate in the melting and fining of glass batch”, The Glass Industry, February 1966, 84.Google Scholar
2. Bickfold, D.F., A. Applewhite-Ramsey, Jantzen, C.M. and Brown, K.G., J. Am. Ceram. Soc. 73, 2896 (1990).Google Scholar
3. Kot, W.K., Gan, H., Pegg, I.L., Ceram. Trans. 107, 441 (2000).Google Scholar
4. Schreiber, H.D., Kozak, S.J., Leonhard, P.G., McManus, K.K., Glasstech. Ber. 60, 389 (1987).Google Scholar
5. Papadopoulos, K., Phys. Chem. Glass. 14, 60 (1973).Google Scholar
6. Gan, H., Muller, I.S., Goloski, L., Pegg, I.L., “Sulphate solubility in glasses for Hanford low activity wastes”, Proc. Int. Congr. Glass, Vol.2, Edinburgh, Scotland, 1-6 July 2001.Google Scholar
7. Pearce, M.L., Beisler, J.F., J. Am. Ceram. Soc. 48, 40 (1982).Google Scholar
8. Ooura, M. and Hanada, T., Glass Technol. 39, 68 (1998).Google Scholar
9. Buhler, P., Phys. Chem. Glass 25, 434 (1999).Google Scholar
10. Pelton, A.D., Wu, P., J. Non-Cryst. Solids 253, 178 (1999).Google Scholar
11. Yun, Y.H. and Bray, P.J., J. Non-Crystalline Solids 27,363 (1978).Google Scholar
12. Dell, W.J., Bray, P.J., Xiao, S.Z., J. Non-Crystalline Solids 58, 1 (1983).Google Scholar
13. Martens, R., Müller-Warmuth, W., J. Non-Crystalline Solids 265, 167 (2000).Google Scholar
14. Stefanovskii, S.V., Livanov, F.A., Radiokhimiya 31, 12 (1990).Google Scholar
15. Kim, C.-W. and Day, D.E., J. Non-Crystalline Solids 331, 20 (2003).Google Scholar
16. McKeown, D.A., Muller, I.S., Gan, H., Pegg, I.L., J. Non-Crystalline Solids 298, 160 (2002).Google Scholar
17. Neuville, D.R., Phys. Chem. Glass. 46, 112 (2005).Google Scholar
18. McKeown, D.A., Muller, I.S., Gan, H., Pegg, I.L., Kendizora, C.A., J. Non-Crystalline Solids 288, 191 (2001).Google Scholar
19. Tsujimura, T., Xue, X, Kanzaki, M. and Walker, M. J., Geochim. Cosmochim. Acta 68, 5081 (2004).Google Scholar
20. McKeown, D.A., Muller, I.S., Gan, H., Pegg, I.L., Stolte, W.C., J. Non-Crystalline Solids 333, 74 (2004).Google Scholar
21. Stull, D.R. and Prophet, H., “JANAF Thermochemical Tables”, U.S. Department of commerce, Washington 1985.Google Scholar
22. Heerdt, R. and Goubeau, J., Zeitschr. Anorg. Chem. 255, 309 (1948).Google Scholar
23. Attos, O., Massot, M., Balkanski, M., Haro-Poniatowski, E., Asomoza, M., J. Non-Crystalline Solids 210, 163 (1997).Google Scholar