Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-26T12:56:59.456Z Has data issue: false hasContentIssue false

A Facile Wet Synthesis of Nanoparticles of Litharge, the Tetragonal Form of PbO

Published online by Cambridge University Press:  17 March 2011

Tommy J. Wilkinson
Affiliation:
Lawrence Berkeley National Laboratory Berkeley, CA 94720
Dale L. Perry*
Affiliation:
Lawrence Berkeley National Laboratory Berkeley, CA 94720
Erik Spiller
Affiliation:
Lawrence Berkeley National Laboratory Berkeley, CA 94720
Paul Berdahl
Affiliation:
Lawrence Berkeley National Laboratory Berkeley, CA 94720
Stephen E. Derenzo
Affiliation:
Lawrence Berkeley National Laboratory Berkeley, CA 94720
Marvin J. Weber
Affiliation:
Lawrence Berkeley National Laboratory Berkeley, CA 94720
*
1 Author to contact regarding correspondence. Lawrence Berkeley National Lab, 1 Cyclotron Road, MS 70A-1150, Berkeley, CA 94720
Get access

Abstract

The red, tetragonal form of lead oxide, α-PbO, litharge, has been synthesized in the nanoparticle range using a rapid, one-step reaction sequence using water as the reaction medium. The product was characterized by powder x-ray diffraction and scanning electron microscopy. With time at room temperature, the original material slowly changed in color intensity, indicating its alteration to β-PbO, massicot. Grinding the aged material converted it back to the original litharge form. The role of impurities in the experimental synthesis of the material and microstructural variations in the final product are discussed, along with the PbO-phase compositions of commercial products.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Venevtsev, Y. N., Gagulin, V. V., and Zhitomirsky, I. D., Ferroelectrics 73, 221 (1987).Google Scholar
2. Baleva, M. and Tuncheva, V., J. Mater. Sci. Lett. 13, 3 (1994)Google Scholar
3. Broek, J. van den, Phillips Res. Repts 24, 119 (1969).Google Scholar
4. Narita, E., Okayasu, H., and Naito, H., Bull. Chem. Soc. Jpn. 57, 309 (1984).Google Scholar
5. Narita, E., Kobayashi, M., Shinjo, H., Tsuchida, H., and Naito, H., Bull. Chem. Soc. Jpn. 56, 3129 (1983).Google Scholar
6. Real, C., Acala, M. D., and Criado, J. M., Solid State Ionics 63–65, 702 (1993).Google Scholar
7. Oswald, H. R., Gunter, J. R., and Shalhlin, W., Helv. Chim. Acta 51, 6 (1968).Google Scholar
8. Douillard, L., Gautier-Soyer, M., Duraud, J. P., Fontaine, A., and Baudelet, F., J. Phys. Chem. Solids 57, 495 (1996).Google Scholar
9. White, W. B., Dachille, F., and Roy, R., J. Amer. Ceram. Soc. 44, 170 (1961).Google Scholar
10. Dachille, F. and Roy, R., Nature (London) 186, 34 (1960).Google Scholar
11. Lewis, D., Northwood, D. O., and Reeve, R. C., J. Appl. Crystallogr. 2, 156 (1969).Google Scholar
12. Criado, J. M. and Morales, J., J. Cient. Ceram. Vidrio 21, 105 (1977). W6.13.5Google Scholar
13. Adams, D. M., Christy, A. G., Haines, J., and Clark, S. M., Phys. Rev. B 46, 11358 (1992).Google Scholar
14. Kwestroo, W. and Huizing, A., J. Inorg. Nucl. Chem. 27, 1951 (1965).Google Scholar
15. Isobe, T. and Senna, M., Reactivity of Solids 8, 29 (1990).Google Scholar
16. Sorrell, C. A., J. Amer. Ceram. Soc. 55, 47 (1972).Google Scholar