Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T16:41:05.463Z Has data issue: false hasContentIssue false

Fabrication of the Cerium Oxide Nanocrystal Film with Heterogeneous Ligand Structures

Published online by Cambridge University Press:  31 January 2011

Daisuke Hojo
Affiliation:
dhojo@tagen.tohoku.ac.jp, Tohoku University, Advanced Institute for Materials Research, Sendai, Japan
Takanari Togashi
Affiliation:
togashi@tagen.tohoku.ac.jp, Tohoku University, Advanced Institute for Materials Research, Sendai, Japan
Tadafumi Adschiri
Affiliation:
ajiri@tagen.tohoku.ac.jp, Tohoku University, Advanced Institute for Materials Research, Sendai, Miyagi, Japan
Get access

Abstract

Sufficiently dense films of cerium oxide nanocrystals modified with decanoic acid, with sizes of ˜9 nm, were fabricated on the surface by modifying a silicon substrate with 3,4-dihydroxyhydrocinnamic acid, where catechol group lied at the top. By doing this, no further pretreatment for the modified cerium oxide nanocrystals is required to fix them chemically on the substrate. Selective adhesion between nanocyrstals and the substrate for the two-dimensional assembly can be attributed to the chemical bonding formed by on-site ligand exchange between carboxyl and catechol groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Alivisatos, A. P., Science 1996, 271, 933.Google Scholar
2 Velev, O. D. and Gupta, S., Adv. Mater. 2009, 21, 1897.Google Scholar
3 Lee, D., Rubner, M. F., and Cohen, R. E., Nano lett. 2006, 6, 2305.Google Scholar
4 Cattaruzza, F., Fiorani, D., Flamini, A., Imperatori, P., Scavia, G., Suber, L., Testa, A. M., Mezzi, A., Ausanio, G., Plunkett, W. R., Chem. Mater. 2005, 17, 3311.Google Scholar
5 Leem, G., Jamison, A. C., Zhang, S., Litvinov, D., Lee, T. R., Chem. Commun. 2008, 4989.Google Scholar
6 Yamanoi, Y., Yonezawa, T., Shirahata, N., Nishihara, H., Langmuir 2004, 20, 1054.Google Scholar
7 Ni, J., Lipert, R. J., Dawson, G. B., Porter, M. D., Anal. Chem. 1999, 71, 4903.Google Scholar
8 Song, H. M., Ye, P. D., and Ivanisevic, A., Lamgmuir 2007, 23, 9472.Google Scholar
9 Altavilla, C., Ciliberto, E., Gatteschi, D., Sangregorio, C., Adv. Mater. 2005, 17, 1084.Google Scholar
10 Mizuno, M., Sasaki, Y., Yu, A. C. C., Inoue, M., Langmuir 2004, 20, 11305.Google Scholar
11 Enders, D., Nagao, T., Nakayama, T., Aono, M., Langmuir 2007, 23, 6119.Google Scholar
12 Zhang, J., Ohara, S., Umetsu, M., Naka, T., Hatakeyama, Y., Adschiri, T., Adv. Mater. 2007, 19, 203.Google Scholar
13 Kaneko, K., Inoke, K., Freitag, B., Hungria, A. B., Midgley, P. A., Hansen, T. W., Zhang, J., Ohara, S., Adschiri, T., Nano Lett. 2007, 7, 421.Google Scholar
14 Adschiri, T., Chem. Lett. 2007, 36, 1188.Google Scholar
15 Felten, A., Bittencourt, C., Pireaux, J. J., Lier, G. V., and Charlier, J. C., J. Appl. Phys. 2005, 98, 074308.Google Scholar
16 Meyer, W., Grunze, M., Lamb, R., Vilamil, A. O., Schrepp, W., Braun, W., Surf. Sci. 1992, 273, 205.Google Scholar
17 Langereis, E., Heil, S. B. S., Knoops, H. C. M., Keuning, W., Sanden, M. C. M. van de, Kessels, W. M. M., J. Phys. D: Appl. Phys. 2009, 42, 073001.Google Scholar
18 Patsalas, P., Logothetidis, S., Metaxa, C., Appl. Phys. Lett. 2002, 81, 466.Google Scholar