Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T22:16:19.314Z Has data issue: false hasContentIssue false

Fabrication of Ordered Sub-Micron Topographies on Large-Area Poly(Urethane Urea) by Two-Stage Replication Molding

Published online by Cambridge University Press:  15 March 2011

Keith R. Milner
Affiliation:
Dept of Bioengineering, College of Medicine, Pennsylvania State University, Hershey, PA17033 Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, PA17033
Mallory Balmer
Affiliation:
Dept of Bioengineering, College of Medicine, Pennsylvania State University, Hershey, PA17033
Henry J. Donahue
Affiliation:
Musculoskeletal Research Laboratory, Center for Biomedical Devices and Functional Tissue Engineering and Department of Orthopaedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA17033
Alan J. Snyder
Affiliation:
Dept of Bioengineering, College of Medicine, Pennsylvania State University, Hershey, PA17033 Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, PA17033
Christopher A. Siedlecki
Affiliation:
Dept of Bioengineering, College of Medicine, Pennsylvania State University, Hershey, PA17033 Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, PA17033
Get access

Abstract

It has been established that material surface topography can have a significant effect on biological cell adhesion, in the absence of changes in surface chemistry. Such investigations were typically performed using surface features with size on the order of microns, comparable to the dimensions of the cells. It has been demonstrated that sub-micron sized topographies that cannot be created via contact lithography also influence cell behavior. The ability to affect cell adhesion is a prime consideration in the development of novel biomaterials. This study reports a two-stage replication molding process for fabricating ordered sub-micron sized features over a large area of biomedical polyether(urethane urea). Such a technique has great applicability in the area of long-term implantable materials as a method for influencing cell-material interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L., and Nealey, P. F., Biomaterials 20 (6), 573 (1999).Google Scholar
2 Braber, E. T. den, Ruijter, J. E. de, Smits, H. T. J., Ginsel, L. A., Recum, A. F. von, and Jansen, J. A., Biomaterials 17 (11), 1093 (1996).Google Scholar
3 Walboomers, X. F., Monaghan, W., Curtis, A. S. G., and Jansen, J. A., J. Biomed. Mater. Res. 46 (2), 212 (1999).Google Scholar
4 Wojciak-Stothard, B., Madeja, Z., Korohoda, W., Curtis, A., and Wilkinson, C., Cell Biol. Int. 19 (6), 485 (1995).Google Scholar
5 Turner, A. M. P., Dowell, N., Turner, S. W. P., Kam, L., Isaacson, M., Turner, J. N., Craighead, H. G., and Shain, W., J. Biomed. Mater. Res. 51 (3), 430 (2000).Google Scholar
6 Clark, P., Connolly, P., Curtis, A. S. G., Dow, J. A. T., and Wilkinson, C. D. W., J. Cell Sci. 99, 73 (1991).Google Scholar
7 Turner, S., Kam, L., Isaacson, M., Craighead, H. G., Shain, W., and Turner, J., J. Vac. Sci. Technol. B 15 (6), 2848 (1997).Google Scholar
8 Thapa, A., Miller, D. C., Webster, T. J., and Haberstroh, K. M., Biomaterials 24 (17), 2915 (2003).Google Scholar
9 Dalby, M. J., Riehle, M. O., Johnstone, H. J. H., Affrossman, S., and Curtis, A. S. G., 8 (6), 1099 (2002).Google Scholar
10 Curtis, A. S. G., Casey, B., Gallagher, J. O., Pasqui, D., Wood, M. A., and Wilkinson, C. D. W., Biophys. Chem. 94 (3), 275 (2001).Google Scholar
11 Xia, Y. N., McClelland, J. J., Gupta, R., Qin, D., Zhao, X. M., Sohn, L. L., Celotta, R. J., and Whitesides, G. M., Adv. Mater. 9 (2), 147 (1997).Google Scholar
12 Walboomers, X. F., Croes, H. J. E., Ginsel, L. A., and Jansen, J. A., J. Biomed. Mater. Res. 47 (2), 204 (1999).Google Scholar
13 Eisenbarth, E., Meyle, J., Nachtigall, W., and Breme, J., Biomaterials 17 (14), 1399 (1996).Google Scholar
14 Zdrahala, R. J. and Zdrahala, I. J., J. Biomater. Appl. 14 (1), 67 (1999).Google Scholar
15 Lee, J. H., Ju, Y. M., Lee, W. K., Park, K. D., and Kim, Y. H., J. Biomed. Mater. Res. 40 (2), 314 (1998).Google Scholar
16 Park, J. H., Park, K. D., and Bae, Y. H., Biomaterials 20 (10), 943 (1999).Google Scholar
17 Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. Y., and Ingber, D. E., Annu. Rev. Biomed. Eng. 3, 335 (2001).Google Scholar
18 Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E., and Whitesides, G. M., Langmuir 18 (13), 5314 (2002).Google Scholar
19 Schmid, H. and Michel, B., Macromolecules 33 (8), 3042 (2000).Google Scholar