Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T12:05:42.358Z Has data issue: false hasContentIssue false

Fabrication of Hemt-on-Si by Movpe for Lsi Applications

Published online by Cambridge University Press:  26 February 2011

Tatsuya Ohori
Affiliation:
FUJITSU LABORATORIES LTD., 10–1 Morinosato-wakamiya, Atsugi
T. Kikkawa
Affiliation:
FUJITSU LABORATORIES LTD., 10–1 Morinosato-wakamiya, Atsugi
M. Suzuki
Affiliation:
FUJITSU LTD., 1015 Kamikodanaka, Kawasaki, Japan
K. Takasaki
Affiliation:
FUJITSU LTD., 1015 Kamikodanaka, Kawasaki, Japan
J. Romeno
Affiliation:
FUJITSU LABORATORIES LTD., 10–1 Morinosato-wakamiya, Atsugi
Get access

Abstract

We grew selectively doped heterostructures on a Si substrate by metalorganic vapor phase epiaxy (MOVPE) for the first time and fabricated high electron mobility transistors (HEMTs). The conventional selective dry etching process to fabricate enhancement and depletion mode HEMTs on the same wafer, can be used without changing any process conditions. We evaluated the side-gate effect and obtained a critical voltage of 8V. This is large enough for LSI applications. We fabricated HEMTs on two kinds of GaAs-on-Si substrates. One had a small etch pit density (EPD) and poor surface morphology. The other had a large EPD, and better surface morphology. We compared the characteristics of devices on these two substrates, and the degradation of their characteristics was larger for the substrate with a small EPD and poor surface morphology. We conclude that improvement of surface morphology is more important than reduction of dis-location density. For the substrate with better surface morphology, maximum transconductance and K-value, for a gate length of 1 μm were 91% and 84% those of on-GaAs devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For examples see; Heteroepitaxy on Si; Fundamentals, Structure and Devices, Wu, C. W., Mattera, V. D. and Gossard, A. C., eds., (Mater. Res. Soc. Symp. Proc. 145, Pittsburgh, 1989).Google Scholar
[2] Choi, H. K., Tsaur, B. Y., Metze, G. H., Turner, G. W. and Fan, J. c., IEEE Electron Device Lett. EDL–5, 207 (1984).Google Scholar
[3] Ishida, T., Nonaka, T., Yamaguchi, C., Kawarada, Y., Sano, Y., Akiyama, M. and Kaminishi, K., IEEE Electron Devices ED–32, 1037 (1985).CrossRefGoogle Scholar
[4] Aksun, M. I., Morkoc, H., Lester, L. F., Duh, K. H. G., Smith, P. M., Chao, P. C., Longerbone, M. and Erickson, L. P., Appl. Phys. Lett. 49, 1654 (1986).Google Scholar
[5] Chand, N., Ren, F., Pearton, S. J., Shah, N. J., and Cho, A. Y., IEEE Electron Device Lett. EDL–8, 185 (1987).Google Scholar
[6] Shichijo, H., Matyi, R. J., and Taddiken, A. H., IEEE Electron Devices Lett. EDL–9, 444 (1988).CrossRefGoogle Scholar
[7] Ma, T., Ueda, D., Lee, W.-S., Adkisson, J., and Harris, J. S. Jr, IEEE Electron Device Lett. EDL–19, 657 (1988).Google Scholar
[8] Charasse, M. N., Bartenlian, B., Gerard, B., Hirtz, J. P., Laviron, M., de Parscau, A. M., Derevonko, M. and Delagebeaudeuf, D., Jpn. J. Appl. Phys. 28, L1896 (1989).Google Scholar
[9] Egawa, T., Nozaki, S., Soga, T., Jimbo, T. and Umeno, M., Jpn. J. Appl. Phys. 29, L2417.Google Scholar
[10] Fischer, R., Kopp, W., Gedymin, J. S. and Morkoc, H., IEEE Trans. Electron Device Letter. EDL–33, 1407 (1986).CrossRefGoogle Scholar
[11] Noge, H., Kano, H., Hashimoto, M. and Igarashi, I., in Heteroepitaxy on Si; Fundamentals, Structure and Devices, Choi, H. K., Hull, R., Ishiwara, H. and Nemanich, R. J. eds, (Mater. Res. Soc. Symp. Proc. 116, Pittsburg, 1988), p. 199.Google Scholar
[12] Chand, N., Ren, F., Van der Ziel, J. P. and Chenin, Y. k., in III-V Heterostructures For Electronic/Photonic Devices, Wu, C. W., Matterà, V. D. and Gossard, A. C., eds., (Mater. Res. Soc. Symp. Proc. 145, 1989), p. 287 Google Scholar
[13] Tanaka, H., Tomesakai, N., Itoh, H., Ohori, T., Makiyama, K., Okabe, T., Takikawa, M., Kasai, K. and Romeno, J., Jpn. J. Appl. Phys., 29 (1990) 10.CrossRefGoogle Scholar
[14] Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984)CrossRefGoogle Scholar
[15] Eshita, T., presented at the 7th International Conference on Vapour Growth and Epitaxy, NAGOYA, Japan No. 16pCL07, 1991 (unpublished)Google Scholar
[16] Lee, J. W., Shichijo, H., Tsai, H. L. and Matyi, R. J., Appl. Phys. Lett. 50, 31 (1987).Google Scholar
[17] Choi, C., Otsuka, N., Munns, G., Houdre, R., Morkoc, H., Zhang, S. L., Levi, D. and Klein, M. V., Appl. Phys. Lett. 50, 992 (1987).Google Scholar
[18] Suzuki, M., Notomi, S., Ono, M., Kobayashi, N., Mitani, E., Odani, K., Mimura, T. and Abe, M., ISSCC Dig. Tech. Papers (1991) 48.Google Scholar