Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T13:18:45.586Z Has data issue: false hasContentIssue false

Fabrication and Characterizations of ZnO and ZnO:Mn Nanocrystalline Thin Films

Published online by Cambridge University Press:  01 February 2011

Yichun Liu
Affiliation:
Advanced Center for Optoelectronic Functional Materials Research, Northeast Normal University, Changchun 130024, PRC. Key Laboratory of Excited State Processes, CIOFMP-CAS, Changchun, China.
Dongxu Zhao
Affiliation:
Key Laboratory of Excited State Processes, CIOFMP-CAS, Changchun, China.
X.T. Zhang
Affiliation:
Key Laboratory of Excited State Processes, CIOFMP-CAS, Changchun, China.
Dezhen Shen
Affiliation:
Key Laboratory of Excited State Processes, CIOFMP-CAS, Changchun, China.
D.O. Henderson
Affiliation:
Chemical Physics Laboratory, Fisk University, Nashville TN
R. Mu
Affiliation:
Chemical Physics Laboratory, Fisk University, Nashville TN
Get access

Abstract

This paper provides a brief summary of the structural and optical study of ZnO and ZnO:Mn materials fabricated from simple process: oxidation of ZnS and ZnS:Mn thin films grown by LPMOCVD. Both structural analysis and optical characterization have confirmed the good quality ZnO material formation. XRD results suggest that the fabricated ZnO film is composed of ∼30 nm ZnO nanocrystals with a hexagonal wurtzite structure. Raman spectra show a strong resonant multiphonon effect. In all cases, a UV emission is observed at ∼ 380 nm. A green emission is also observed in the ZnO nanocrystalline film. On the other hand, it is demonstrated that the Mn doping in ZnS film can dramatically affect the luminescence properties of end products: nanocrystalline ZnO thin films. The photoluminescence spectra of the films with an optimized Mn doping concentration only showed the ultraviolet emission, while the green emission was fully quenched. It is argued that the presence of the Mn can effectively passivate the electron and hole trapping sites at the surface and interface of the ZnO nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Look, D.C., Reynold, D.D., Litton, C.W., Jones, R.L., Eason, D.B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).Google Scholar
2. Zamfirescu, M., Kavokin, A., Gil, B., Malpuech, G., and Kaliteevski, M., Phys. Rev. B. 65, 161205 (2002); ibid Appl. Phys. Lett. 81, 748 (2002).Google Scholar
3. Auret, F.D., Goodman, S.A., Hayes, M., Legodi, M.J., Laarhoven, H.A. van, and Look, D.C., Appl. Phys. Lett. 79, 3074 (2001).Google Scholar
4. Look, D.C., Reynolds, D.C., Hemsky, J.W., Jones, R.L., and Sizelove, J.R., Appl. Phys. Lett. 75, 811 (1999).Google Scholar
5. Zhang, X.T., Liu, Y.C. et al. J. Phys. D: Appl Phys. 34, 3430 (2001); ibid J. Appl. Phys. 92, 3293 (2002).Google Scholar
6. Scott, J.F., Damen, T.C., Silfvast, W.T., Leite, R.C.C., and Cheesman, L.F., Opt. Comm. 1, 397 (1970); ibid, Phys. Rev. B 2, 1209 (1970).Google Scholar
7. Callender, R.H., Sussman, S.S., Selders, M., and Chang, R.K., Phys. Rev. B, 7, 3788 (1973).Google Scholar
8. Hamiton, D.C., Phys. Rev. 188, 1221 (1969).Google Scholar
9. Korona, K.P., Wysmolek, A., Pakula, K., Stepniewski, R., Grzegory, I., Lucznik, B., Wrobleski, K., and Poroski, S., Appl. Phys. Lett. 69, 7881 (1996).Google Scholar
10. Dijken, A. Van, Meulenkamp, E. A., Vanmaekelbergh, D., and Meijerink, A., J. Phys. Chem. B 104, 1715 (2000).Google Scholar