Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T11:31:28.597Z Has data issue: false hasContentIssue false

Fabrication and Characterization of 2D and 3D Ordered Arrays of Nanoparticles

Published online by Cambridge University Press:  10 February 2011

Byron Gates
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700
Ziyi Zhong
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700
Younan Xia
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700, xia@chem.washington.edu
Get access

Abstract

Two methods are presented which have been successfully used to fabricate highly ordered 2D and 3D arrays of nano-scale particles. The first method uses a combination of microcontact printing (μCP) and surface-templated reactions to form 2D patterned arrays of nanoparticles on silicon substrates. The second method uses confined self-assembly to crystallize colloidal particles into 3D cubic-close-packed (ccp) arrays (or opaline structures).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, (a) Liu, D.-C., and Lee, C.-P. Appl. Phys. Lett. 63, 3503 (1993); (b) X. K. Zhao, and J. H. Fendler J. Phys. Chem. 95, 3716 (1991); (c) R. Notzel, Z. Niu, M. Ramsteiner, H.-P. Schonherr, A. Tranpert, L. Dawertiz, and K. H. Ploog Nature 392, 56 (1998); (d) J. R. Heath, R. S. Williams, J. J. Shiang, S. J. Wind, J. Chu, C. D'Emic, W. Chen, C. L. Stanis, J. J. Bucchignano J. Phys. Chem. 100, 3144–3149 (1996); (e) G. S. Hsiao, M. G. Anderson, S. Gorer, D. Harris, R. M. Penner J. Am. Chem. Soc. 119, 1439–1448 (1997); (f) A. Kumar, H. A. Biebuyck, G. M. Whitesides Langmuir 10, 1498–1511 (1994); (g) S. Palacin, P. C. Hidber, J.-P. Bourgoin, C. Miramond, C. Fermon, G. M. Whitesides Chem. Mater. 8, 1316–1325 (1996).10.1063/1.110133Google Scholar
2. See, for example, (a) Ise, N., Angew. Chem. Int. Ed. Engl. 25, 323 (1986). (b) H. B. Sunkara, J. M. Jethmalani, and W. T. Ford, Chem.Mater. 6, 362 (1994). (c) C. A. Murray, and D. G. Grier, American Scientist 83, 238 (1995). (d) A. van Blaaderen, R. Ruel, P. Wiltzius, Nature 385, 321–324 (1997). (e) A. van Blaaderen, MRS Bulletin 23, 39 (1998). (f) A.E. Larsen, and D. G. Grier Nature 385, 230 (1997).10.1002/anie.198603231Google Scholar
3. See, for example, (a) Yeh, S.-R., Seul, M., and Shraiman, B. I., Nature 386, 57 (1997). M. Trau, D. A. Saville, and I. A. Aksay, Science 272, 706 (1996). (b) M. Trau, D. A. Saville, and I. A. Aksay, Langmuir 13, 6375 (1997). (c) M. Trau, S. Sankaran, D. A. Saville, and I. A. Aksay Nature 374, 437 (1995). (d) M. Giersig, and P. Mulvaney Langmuir 9, 3408 (1993). (e) Y. Solomentsev, M. B6hmer, and J. L. Anderson, Langmuir 13, 6058 (1997).10.1038/386057a0Google Scholar
4. See, for example, (a) Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H., Nagayama, K., Langmuir 8, 31833190 (1996); (b) S. Rakers, L. F. Chi, H. Fuchs, Langmuir 13, 7121–7124 (1997).10.1021/la00048a054Google Scholar
5. (a) Park, S. H., Qin, D., and Xia, Y., Adv. Mater. 10, 1028 (1998). (b) S. H. Park, and Y. Xia, Langmuir 15, 266 (1999).10.1002/(SICI)1521-4095(199809)10:13<1028::AID-ADMA1028>3.0.CO;2-P3.0.CO;2-P>Google Scholar
6. Gates, B., Qin, D., and Xia, Y., Adv. Mater., in press (1999).Google Scholar