Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T01:48:58.008Z Has data issue: false hasContentIssue false

Extraction of Polarization-Induced Charge Density in Modulation-Doped AlxGa1-xN/GaN Heterostructures Based on Schottky C-V Simulation

Published online by Cambridge University Press:  21 March 2011

Y.G. Zhou
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
B. Shen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
H.Q. Yu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
J. Liu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
H.M. Zhou
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
R. Zhang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Y. Shi
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Y.D. Zheng
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
T. Someya
Affiliation:
Research Center for Advanced Science and Technology and Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
Y. Arakawa
Affiliation:
Research Center for Advanced Science and Technology and Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
Get access

Abstract

A method based on Schottky capacitance-voltage (C-V) simulation was developed to extract the polarization-induced charge density in modulation-doped AlxGa1-xN/GaN heterostructures. There are two characteristic slopes in the experimental and simulated C-V curves.The influences of the polarization-induced charge density, n-AlGaN doping level and the Schottky barrier height on the positions of the two slopes in the C-V curves are much different from each other. The polarization-induced charge density can be extracted accurately by fitting the experimental C-V curves. It is extracted to be 6.78 x 1012cm-2in modulation-doped Al0.22Ga0.78N/GaN heterostructures with the Al0.22Ga0.78N thickness of 30 nm or 45 nm. The charge density reducesto 1.30 x 1012cm-2in the heterostructure with the Al0.22Ga0.78N thickness of 75 nm. It is thought that the reduction of the polarization-induced charges at the heterointerface is due to the partial relaxation of the Al0.22Ga0.78N layer on GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Khan, M.A., Bhattarai, A., Kuznia, J.N., and Olson, D.T., Appl. Phys. Lett., 63, 1214 (1993)10.1063/1.109775Google Scholar
2. Chen, Q., Wang, J.W., Gaska, R., Khan, M.A., Shur, M.S., Sullivan, G.J., Sailor, A.L., Higgings, J.A., Ping, A.T., and Asesida, I., IEEE Electron Device Lett. 19, 44 (1998)10.1109/55.658598Google Scholar
3. Mishra, U.K., Wu, Y.F., Keller, B.P., Keller, S., and Denbaars, S.P., IEEE Trans. Microwave Theo. & Tech., 46(6), 756 (1998)10.1109/22.681197Google Scholar
4. Bernardini, F., Fiorentini, V., Phys. Rev. B 56, R10024 (1997).10.1103/PhysRevB.56.R10024Google Scholar
5. Asbeck, P.M., Yu, E.T., Lau, S.S., Sullivan, G.J., Hove, J. Van, and Redwing, J., Electron. Lett. 33, 1230 (1998)10.1049/el:19970843Google Scholar
6. Yu, E.T., Sullivan, G.J., Asbeck, P.M., Wang, C.D., Qiao, D., and Lau, S.S., Appl. Phys. Lett. 71, 2794 (1997)10.1063/1.120138Google Scholar
7. Maeda, N., Nishida, T., Kobayashi, N., and Tomizawa, M., Appl. Phys. Lett. 73, 1856 (1998)10.1063/1.122305Google Scholar
8. Shen, B., Someya, T., and Arakawa, Y., Appl. Phys. Lett. 76, 2746 (2000)10.1063/1.126463Google Scholar
9. Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W. and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999)10.1063/1.369664Google Scholar
10. Ambacher, O., Foutz, B., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Sierakowski, A.J., Schaff, W.J., and Eastman, L.F., J. Appl. Phys. 87, 334 (2000)Google Scholar
11. Smorchkova, I.P., Elsass, C.R., Ibbetson, J.P., Vetury, R., Heying, B., Fine, P., Haus, E., Denbarrs, S.P., Speck, J.S. and Mishra, U.K., J. Appl. Phys. 86, 4520 (1999)10.1063/1.371396Google Scholar
12. Zhang, Y.F., Smorchkova, Y., Elsass, C., Keller, S., Ibbetson, J., DenBaars, S., and Singh, J., J. Vac. Sci. Technol. B 18, 2322 (2000)Google Scholar
13. Kroemer, H., Chien, W.Y., Harris, J.S., Jr., and Edwall, D.D., Appl. Phys. Lett. 38, 395 (1980)Google Scholar
14. Kroemer, H., Appl. Phys. Lett. 46, 504 (1985)10.1063/1.95572Google Scholar
15. Yoshida, J., IEEE Trans. Electron. Devices Ed–33, 154 (1986)10.1109/T-ED.1986.22453Google Scholar
16. Ogawa, M., Matsubayashi, H., Ohta, H. and Miyoshi, T., Solid-State Electron. 38, 1197(1995)10.1016/0038-1101(94)00240-GGoogle Scholar
17. Martin, G., Botchkarev, A., Rockett, A., and Morkoc, H., Appl. Phys. Lett. 68, 2541(1996)10.1063/1.116177Google Scholar