Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T00:32:16.841Z Has data issue: false hasContentIssue false

Experimental Study and Modeling of the Radium Sorption onto Goethite

Published online by Cambridge University Press:  21 March 2011

Sylvain Bassot
Affiliation:
Institut de Protection et de SÛreté Nucléaire, DPRE/SERGD/LESTS, BP-6 92265 Fontenay aux Roses Cedex, France Email: sylvain.bassot@ipsn.fr
Caroline Mallet
Affiliation:
Institut de Protection et de SÛreté Nucléaire, DPRE/SERGD/LESTS, BP-6 92265 Fontenay aux Roses Cedex, France Email: caroline.mallet@ipsn.fr
Denise Stammose
Affiliation:
Institut de Protection et de SÛreté Nucléaire, DPRE/SERGD/LESTS, BP-6 92265 Fontenay aux Roses Cedex, France Email: denise.stammose@ipsn.fr
Get access

Abstract

Iron oxyhydroxides play a significant role in radium behavior in uranium mill tailings. Although they are present at trace level (less than 1% in mass), iron oxyhydroxides are responsible of the retention of significant amounts of radium in these residues. A part of these oxyhydroxides is present as amorphous or ill-crystallized forms, the other part corresponds to crystalline iron oxyhydroxides like goethite.

In this paper, we present data concerning radium sorption on a well-characterized goethite (α-FeOOH). Batch experiments have been performed and the influence of different parameters such as contact time, pH and electrolyte concentration of the solution has been examined. The sorption equilibrium was obtained after a contact time of 1 hour. In sodium perchlorate medium, the amount of sorbed radium reaches a maximum for pH higher than 8 and no significant influence of sodium concentration was observed. However, the calcium concentration greatly influences the radium sorption: the greater the calcium concentration, the less radium is sorbed. The kinetics of the radium desorption are slower than those of sorption: more than 30% of radium remains sorbed on goethite after 1 week of contact time.

Using the characteristics of the goethite surface (total number of sites, intrinsic acidity constants, intrinsic constants of calcium), modelling of the experimental data with inner sphere complexes gave satisfactory results. Two surface species involving radium can be formed (SORa+ and SORaOH). These sorption constants determined allow prediction of the radium sorption onto goethite in the chemical conditions of uranium mill tailings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Somot, S., Pagel, M., Thiry, J., Acad, C.R.. Sci. Paris, Sciences de la terre et des planètes, Vol. 325, 111118, (1997).Google Scholar
2. Nirdosh, I., Trembley, W.B., Johnson, C.R., Hydrometallurgy, Vol. 24, 237248, (1990).Google Scholar
3. Marmier, N., GdR 1115, Atelier Réactivité de surface de goethites, Practis 1999-2002, May 7, (1999).Google Scholar
4. Dzombak, D.A. and Morel, F.M.M., Wiley-Interscience Publication, pp.393, (1990).Google Scholar
5. Yates, D.E. and Healy, T.W., J. Chem. Soc. Faraday Trans. 1, 76, 918 (1980).Google Scholar
6. Robertson, A.P. and Leckie, J.O., Environ. Sci. Technol., 32, 25192530 (1998).Google Scholar
7. Balistrieri, L.S. and Murray, J.W., Am. J. Sci., 282, 788806 (1981).Google Scholar
8. Lee, J. Van der, Technical Report LHM/RD/98/39, CIG Ecoles des Mines de Paris, Fontainebleau, (1998).Google Scholar
9. Langmuir, D. and Riese, A., Geochim. Cosmochim. Acta, 49, 15931601, (1985).Google Scholar
10. Goldberg, S. and Sposito, G., Soil. Sci. Soc. Am. J., 48, 772778 (1984).Google Scholar
11. Hsi, C-K. D. and Langmuir, D., Geochim. Cosmochim. Acta, 49, 24232432 (1985).Google Scholar
12. Hawke, D., Carpenter, P.D., Hunter, K.A., Environ. Sci. Technol., 23, 187191, (1989).Google Scholar
13. Somot, S., Radium, uranium et métaux dans les résidus de traitement dynamique, acide et alcalin de minerais d'uranium, Thesis, Nancy I, France (1997).Google Scholar
14. Ames, L.L., McGarrah, J.E., Walker, B.A., Clays and clay minerals, 31, 5, 335342 (1983).Google Scholar
15. Bassot, S., Mobilité du radium et de l'uranium dans un site de stockage de résidus issus du traitement de minerais d'uranium, Thesis, Besançon, France (1997).Google Scholar