Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T07:55:52.482Z Has data issue: false hasContentIssue false

Experimental Evidence that the Onset of Mechanical Softening in Nanocrystalline Metals is Strain Rate Dependent

Published online by Cambridge University Press:  01 February 2011

Liwei Wang
Affiliation:
wangliw@auburn.edu, Auburn University, Materials Engineering, 275 Wilmore Lab, Auburn, AL, 36849-5341, United States, 334-844-4733
Bart Prorok
Affiliation:
prorok@auburn.edu, Auburn University, Materials Engineering, 275 Wilmore Lab, Auburn, AL, 36849-5341, United States, 334-844-4733
Get access

Abstract

This paper reports on the influence of strain rate on the onset of mechanical softening of nanocrystalline gold at room temperature. Micro-tensile testing was performed with applied strain rates on the order of 10−4 s−1 to 10−6 s−1. Our results defined a threshold strain rate, whereby plastic deformation at larger rates was dominated by dislocation processes and at smaller rates by one or more other deformation mechanisms. Furthermore, the data suggested that the critical grain size for inverse Hall-Petch behavior was strain rate sensitive.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Valiev, R., Nature, 419 887 (2002).Google Scholar
2 Gleiter, H., Acta Mater., 48 1 (2000).Google Scholar
3 Hall, E.O., Proceedings of the Physical Society of London Section B, 64 747 (1951).Google Scholar
4 Petch, N.J., Journal of the Iron and Steel Institute, 174 25 (1953).Google Scholar
5 Ashby, M.F., Philosophical Magazine, 21 399 (1970).Google Scholar
6 Chokshi, A.H., Rosen, A., Karch, J. and Gleiter, H., Scripta Mater., 23 1679 (1989).Google Scholar
7 Palumbo, G., Erb, U. and Aust, K.T., Scripta Mater., 24 2347 (1990).Google Scholar
8 Nieh, T.G. and Wadsworth, J., Scripta Mater., 25 955 (1991).Google Scholar
9 Sakai, S., Tanimoto, H. and Mizubayashi, H., Acta Mater., 47 211 (1998).Google Scholar
10 Emery, R.D. and Povirk, G.L., Acta Mater., 51 2079 (2003).Google Scholar
11 Chasiotis, I., Bateson, C., Timpano, K., McCarty, A.S., Barker, N.S. and Stanec, J.R., Thin Solid Films, 515 3183 (2007).Google Scholar
12 Read, D.T., Cheng, Y.W., Keller, R.R. and McColskey, J.D., Scr. Mater., 45 583 (2001).Google Scholar
13 El-Deiry, P.A. and Vinci, R.P., Mater. Res. Soc. Sym. Proc., 695 L4.2.1 (2002).Google Scholar
14 Conrad, H. and Jung, K., Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing, 406 78 (2005).Google Scholar
15 Kim, H.S. and Estrin, Y., Acta Mater., 53 765 (2005).Google Scholar
16 Prorok, B.C. and Espinosa, H.D., J. Nanosci. Nanotech., 2 427 (2002).Google Scholar
17 Espinosa, H.D., Prorok, B.C. and Fischer, M., J. Mech. Phys. Sol., 51 47 (2003).Google Scholar
18 Espinosa, H.D., Prorok, B.C. and Peng, B., J. Mech. Phys. Sol., 52 667 (2004).Google Scholar
19ASTM, “Standard E112-96E2,” Annual Book of ASTM Standards, ed. 1996)Google Scholar
20 Morita, T., Mitra, R. and Weertman, J.R., Mater. Trans., 45 502 (2004).Google Scholar
21 Zhu, B., Asaro, R.J., Krysl, P., Zhang, K. and Weertman, J.R., Acta Mater., 54 3307 (2006).Google Scholar
22 Mahan, J. and Charbeneau, G.T., J. Am. Acad.Gold Foil Oper., 8 6 (1965).Google Scholar
23 Nenadovi, T., Bibi, N., Kraljevi, N. and Adamov, M., Thin Solid Films, 34 211 (1976).Google Scholar
24 Weertman, J.R., personal communication (2002).Google Scholar
25 Gleiter, H., Prog. Mater. Sci., 33 223 (1989).Google Scholar
26 VanSwygenhoven, H. and Caro, A., Appl. Phys. Lett., 71 1652 (1997).Google Scholar
27 Schiotz, J., Tolla, F.D. Di and Jacobsen, K.W., Nature, 391 561 (1998).Google Scholar
28 Lu, L., Li, S.X. and Lu, K., Scripta Mater., 45 1163 (2001).Google Scholar
29 Mukherjee, A.K., Bird, J.E. and Dorn, J.E., Trans. ASM, 62 155 (1969).Google Scholar
30 Stocker, R.L. and Ashby, M.F., Scripta Mater., 7 115 (1973).Google Scholar
31 Coble, R.L., J. Appl. Phys., 34 1679 (1963).Google Scholar
32 Ashby, M.F. and Verrall, R.A., Acta Metallurgica, 21 149 (1973).Google Scholar