Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T07:43:50.022Z Has data issue: false hasContentIssue false

Experimental Benchmarking of Pu Electronic Structure

Published online by Cambridge University Press:  26 February 2011

James G Tobin
Affiliation:
Tobin1@LLNL.gov, LLNL, CMS, 7000 East Ave, Livermore, CA, 94550, United States, 925-422-7247, 925-423-7040
K T Moore
Affiliation:
moore78@llnl.gov
B W Chung
Affiliation:
chung7@llnl.gov
M A Wall
Affiliation:
wall1@llnl.gov
A J Schwartz
Affiliation:
schwartz6@llnl.gov
B B Ebbinghaus
Affiliation:
ebbinghaus1@llnl.gov
M T Butterfield
Affiliation:
butterfield6@LLNL.Gov
N E Teslich Jr
Affiliation:
teslich1@llnl.gov
R A Bliss
Affiliation:
bliss5@llnl.gov
S A Morton
Affiliation:
samorton@lbl.gov
S W Yu
Affiliation:
yu21@llnl.gov
T Komesu
Affiliation:
komesut@umr.edu
G D Waddill
Affiliation:
waddill@physics.umr.edu
G Van Der Laan
Affiliation:
G.Van_Der_Laan@dl.ac.uk
A L Kutepov
Affiliation:
A.L.Kutepov@vniitf.ru
Get access

Abstract

The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy [1], x-ray absorption spectroscopy [1,2,3,4], electron energy loss spectroscopy [2,3,4], Fano Effect measurements [5], and Bremstrahlung Isochromat Spectroscopy [6], including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples. [2,3,6]

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tobin, J.G., Chung, B.W., Schulze, R. K., Terry, J., Farr, J. D., Shuh, D. K., Heinzelman, K., Rotenberg, E., Waddill, G.D., and Van der Laan, G., “Resonant Photoemission in f-electron Systems: Pu and Gd”, Phys. Rev. B 68, 1155109 (October 2003).Google Scholar
2. Moore, K.T., Wall, M.A., Schwartz, A.J., Chung, B.W., Shuh, D.K., Schulze, R.K., and Tobin, J.G., “The Failure of Russell-Saunders Coupling in the 5f States of Plutonium”, Phys. Rev. Lett. 90, 196404 (May 2003).Google Scholar
3. van der Laan, G., Moore, K.T., Tobin, J.G., Chung, B.W., Wall, M.A., and Schwartz, A.J.,,“Applicability of the spin-orbit sum rule for the actinide 5f states,” Phys. Rev. Lett. 93, 097401 (Aug 2004).Google Scholar
4. Tobin, J.G., Moore, K.T., Chung, B.W., Wall, M.A., Schwartz, A.J., van der Laan, G., and Kutepov, A.L., “Competition Between Delocalization and Spin-Orbit Splitting in the Actinide 5f States,” Phys. Rev. B 72, 085109 (2005).Google Scholar
5. Tobin, J.G., Morton, S.A., Chung, B.W., Yuand, S.W., Waddill, G.D., “Spin-Resolved Electronic Structure Studies of Non-Magnetic Systems: Possible Observation of the Fano Effect in Polycrystal Ce,” submitted to Physica B, Proceedings of SCES05, Vienna, Austria, July 2005.Google Scholar
6. Tobin, J.G., Butterfield, M.T., Teslich, N.E. Jr, Bliss, R.A., Wall, M.A., McMahan, A.K., Chung, B.W., Schwartz, A.J., “Using Nano-focussed Bremstrahlung Isochromat Spectroscopy (nBIS) to Determine the Unoccupied Electronic Structure of Pu,” submitted to the Royal Society of Chemistry, Proceedings of the Actinides 2005 Meeting, Manchester, UK, July 2005.Google Scholar
7. Chung, B.W., Schwartz, A.J., Ebbinghaus, B.B., Fluss, M.J., Haslam, J.J., Blobaum, K.J.M., and Tobin, J.G., “Spectroscopic Signature of Aging in δ-Pu(Ga),” submitted to Europhysics Letters; B.W. Chung et al, MRS Symp. Proc. 2006.Google Scholar
8. Soderlind, P. and Sadigh, B., Phys. Rev. Lett. 92, 185702 (2004).Google Scholar
9. Soderlind, P., Landa, A., and Sadigh, B., Phys Rev. B 66, 205109 (2002).Google Scholar
10. Sadigh, B., Soderlind, P. and Wolfer, W., Phys. Rev. B 68, 241101R (2003).Google Scholar
11. Kotliar, G. and Vollhardt, D., Physics Today 57, 53 2004.Google Scholar
12. Saravsov, S.Y., Kotliar, G. and Abrahams, E., Nature 410, 793 (2001).Google Scholar
13. Baer, Y. and Lang, J.K., Phys. Rev B 21, 2060 (1980).Google Scholar
14. Penicaud, M., J. Phys. Condensed Matter 9, 6341 (1990).Google Scholar
15. Fano, U., Phys. Rev. 178, 131 (1969); 184, 250 (1969).Google Scholar
16. Heinzmann, U., Kessler, J., and Lorenz, J., Phys. Rev. Lett. 25, 1325 (1970).Google Scholar
17. Yu, S.W., Komesu, T., Chung, B.W., Waddill, G.D., Morton, S.A., and Tobin, J.G., “Study of the f electron correlations in nonmagnetic Ce by means of spin resolved resonant photoemission,” to be submitted to Phys. Rev. B, 2005.Google Scholar