Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T13:35:53.384Z Has data issue: false hasContentIssue false

Experimental and Theoretical Investigations on the Interrelation of Charge Exchange Processes and Energy Loss of Particles at Metal Surfaces

Published online by Cambridge University Press:  16 February 2011

A. NÄrmann
Affiliation:
Universität Osnabrück, Fachbereich Physik, W-4500 Osnabrück, Germany
W. Heiland
Affiliation:
Universität Osnabrück, Fachbereich Physik, W-4500 Osnabrück, Germany
R. Monreal
Affiliation:
Universidad Autónoma de Madrid, Dept. de la Materia Condensada, Cantoblanco, E-28049 Madrid, Spain
F. Flores
Affiliation:
Universidad Autónoma de Madrid, Dept. de la Materia Condensada, Cantoblanco, E-28049 Madrid, Spain
P. M. Echenique
Affiliation:
Euskal Herriko Univertsitatea, Kimika Fakultatea, Apdo. 1072, E-20080 San Sebastión, Spain
Get access

Abstract

We present experiments and a theoretical model for the energy loss distribution of specularly reflected particles after slow (2-5 keV) He ions have been impinging on a Ni(110) surface under grazing incidence. The energy spectra of the backscattered particles are asymmetric with the low-energy tail falling off more slowly than the high-energy tail does.

This asymmetry is accounted for by considering charge exchange events during the interaction with the surface. The main neutralization channel for this system is the Auger-neutralization from the conduction band into the He-1s ground state. The transition rate for this process was calculated from first principles. Assuming that the ‘friction coefficient’ for the system particle-surface depends on the charge state of the particle, we calculate the energy lost by a particle during the interaction as a sum of different contributions belonging to different charge states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Willerding, B., Steininger, H., Snowdon, K. J. and Heiland, W., Nucl. Instrum. Methods Phys. Res. B2,453(1984).Google Scholar
2. Närmann, A., Heiland, W., Monreal, R., Flores, F. and Echenique, P. M., Phys. Rev. B44,(1991);Phys. Rev. Lett. 64,1601 (1990).Google Scholar
3. Echenique, P. M., Flores, F. and Ritchie, R. H., Solid State Physics Series 43, 229(1990).Google Scholar
4. Hagstrum, H. D., in Inelastic Ion-Surface Collisions, edited by Tolk, N. H., Tully, J. C., Heiland, W. and White, C. W. (Academic Press, New York, 1977), p. 1.Google Scholar
5. Helland, W. and Taglauer, E., Nucl. Instrum. Methods Phys. Res. 132,535(1976)Google Scholar
6. Aono, M. and Souda, R., Nucl. Instrum. Methods Phys. Res. B27,55(1987)Google Scholar
7. Shoji, F., Oura, K. and Hanawa, T., Nucl. Instrum. Methods Phys. Res. B36,23(1989)Google Scholar
8. Fano, U. and Lichten, W., Phys. Rev. Lett. 14,627(1965)Google Scholar
9. O'Connor, D. J. and MacDonald, R. J., Nucl. Instrum. Methods Phys. Res. 170,495(1980)Google Scholar
10. Robinson, M. T. and Torrens, I. M., Phys. Rev. B9, 5008(1974)Google Scholar
11. Oen, O. S. and Robinson, M. T., Nucl. Instrum. Methods Phys. Res. 132,647(1976)Google Scholar
12. Ziegler, J. F., Biersack, J. P. and Littmark, U. in Stopping Powers and Ranges of Ions in Matter, edited by Ziegler, J. F. (Pergamon, New York, 1985), p. 1.Google Scholar
13. Kumakhov, M. A. and Komarov, F. F., Energy loss and ion ranges in solids,(Gordon and Breach, New York, 1981)Google Scholar
14. Ferrell, T. L. and Ritchie, R. H., Phys. Rev. B16,115(1977)Google Scholar
15. Bichsel, H., Rev. Mod. Phys. 60,663(1988)Google Scholar