Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T01:23:06.928Z Has data issue: false hasContentIssue false

Excited-State-Absorption Cross Sections and Amplifier Modeling in the 1300-nm Region for Nd-Doped Glasses

Published online by Cambridge University Press:  15 February 2011

S. Zemon
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
B. Pedersen
Affiliation:
Technical University of Denmark, Electromagnetics Institute, Dk-2800, Lyngby, Denmark
G. Lambert
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
W. J. Miniscalco
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
B. T. Hall
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
R. C. Folweiler
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
B. A. Thompson
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
L. J. Andrews
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
Get access

Abstract

The performance of Nd3+-doped fiber amplifiers is limited by strong excited state absorption (ESA) of the signal, even for fluorozirconate glasses where ESA prevents the important region below 1320 nm from being used. To quantify this and explore alternative host materials, ESA and stimulated-emission cross sections have been measured for a representative group of glass compositions. These parameters have been used in an accurate, fiber-amplifier model to provide the first quantitative comparisons of performance for Nd3+-doped glasses in the 1300-nm band as a function of host. A high-fluorine fluorophosphate is predicted to extend the short-wavelength boundary of the gain spectrum to 1295 nm but only at reduced gain levels and at the cost of having lower gains at longer wavelengths than fluorozirconates. A substantial increase in small-signal gain is predicted if the amplified spontaneous emission for the 1050-nm band is suppressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brierley, M., Carter, S., and France, P., Electron. Lett. 26, 329 (1990).10.1049/el:19900216CrossRefGoogle Scholar
2. Sugawa, T., Miyajima, Y., and Komukai, T., Electron. Lett. 26 2042 (1990).10.1049/el:19901317CrossRefGoogle Scholar
3. Miniscalco, W. J., Andrews, L. J., Thompson, B. A., Quimby, R. S., B.Vacha, L. J., and Drexhage, M. G., Electron. Lett. 24,. 28 (1988).CrossRefGoogle Scholar
4. Morkel, P. R., Farries, M. C., and Poole, S. B., Opt. Commun. 7, 349 (1988).Google Scholar
5. Yamashita, T., in Fiber Laser Sources and Amplifiers, edited by Digonnet, Michel J. (Proc. SPIE 1171. Bellingham, WA 1989), pp. 291299; S. G. Grubb, W. L. Barnes, E. R. Taylor, and D. N. Payne, Electron. Lett. 26, 121 (1990); H. Aoki, O. Maruyama, and Y. Asahara, Electron. Lett. 26, 1911, 1990.CrossRefGoogle Scholar
6. Zemon, S., Lambert, G., Miniscalco, W. J., Davies, R. W., Hall, B. T., Folweiler, R. C., Wei, T., Andrews, L. J., and Singh, M. P., in Fiber Laser Sources and Amplifiers II, edited by Digonnet, Michel J. (Proc. SPIE 1373, Bellingham, WA 1991) pp. 2132.Google Scholar
7. Dakss, M. L. and Miniscalco, W. J., IEEE Photon. Technol. Lett. 2, 650 (1990).CrossRefGoogle Scholar
8. Andrews, L. J., Miniscalco, W. J., and Wei, T., in Proc.lst Int. School on Excited States of Transition Elements, edited by Jezowska-Trzebiatowska, B. (Singapore: World Scientific, 1989) pp. 930.Google Scholar
9. Pedersen, B., Bjarklev, A., Povlsen, J. H., Dybdal, K., and Larsen, C. C., J. Lightwave Technol. LT–9, 1105 (1991).CrossRefGoogle Scholar
10. Øbro, M., Pedersen, B., Bjarklev, A., Povlsen, J. H., and Pedersen, J. H., Electron. Lett. 27, 470 (1991).Google Scholar