Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T18:54:43.577Z Has data issue: false hasContentIssue false

Excimer Laser Surface Modification: Process and Properties

Published online by Cambridge University Press:  25 February 2011

T. R. Jervis
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, NM 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
J.-P. Hirvonen
Affiliation:
Metallurgy Laboratory, Technical Research Institute of Finland, SF-02150 Espoo, Finland.
Get access

Abstract

Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles.

Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and pre-deposited layer sources has been observed in metals, semiconductors, and ceramics. Surface enrichment of Cr by zone refinement of stainless steel has also been seen. Rapid solidification after melting often results in the formation of non-equilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Laser Materials Processing, Bass, M., Ed. (North Holland, Amsterdam, (1983).Google Scholar
2. Laser Surface Treatment of Metals, Draper, C. W. & Mazzoldi, P., Eds, Martinus Nijhoff, Dordrecht, 1986).Google Scholar
3. Laser Treatment of Metals, Mordike, B. L., Ed, (Informationsgesellschaft, Oberursel, (1987).Google Scholar
4. Molian, P. A. in Surface Modification Technologies, Sudarshan, T. S., Ed, (Marcel Dekker, New York 1989) p. 421.Google Scholar
5. Handbook of Laser Science and Technology Vol 4 Part 2, (CRC Press, Boca Raton, FL, 1986).Google Scholar
6. von Alimen, M., Laser Beam Interactions with Materials, (Springer Verlag, Berlin, 1987).CrossRefGoogle Scholar
7. Gregson, V. G., in Laser Materials Processing, Bass, M., Ed. (North Holland, Amsterdam, 1983), p 201.Google Scholar
8. Singh, R. K. & Viatella, J., J. of Metals, 3/1992, p 20.CrossRefGoogle Scholar
9. Unamuno, S., Toulemonde, M., & Siffert, P., in Laser Processing and Diagnostics, Bäurle, D., Springer (1984) p 35.CrossRefGoogle Scholar
10. Jervis, T. R., Hirvonen, J. -P., Nastasi, M., & Cohen, M. R., Mat. Res. Soc. Symp. Proc. 157 395(1990).Google Scholar
11. Jervis, T. R., Zocco, T. G., & Steele, J. H., Jr., Mater. Res. Soc. Symp Proc. 201 535 (1991).Google Scholar
12. Hirvonen, J. -P., Jervis, T. R., & Zocco, T. G., Mat. Res. Soc. Symp. Proc. 157431 (1990).Google Scholar
13. Fujimoto, J. G. & Ippen, E. P. in Laser Optics of Condensed Matter, Birman, J. L., Cummins, H. Z., & Kaplyanskii, A. A., eds. Plenum, New York, 1988) p. 11.Google Scholar
14. Jervis, T. R. & Hirvonen, J. -P., Wear 150 259 (1991).Google Scholar
15. Spaepen, F., Hume Rothery Symposium on Under cooled Alloy Phases, Collings, E. W. & Koch, C. C., Eds, (TMS-AIME 1986).Google Scholar
16. Turnbull, D., Met. Trans. 12A, 695 (1981).Google Scholar
17. Follstaedt, D. M. & Picraux, S. T., in Surface Alloying by Ion, Electron, and Laser Beams, (ASM, Metals Park, OH, 1987) p. 175.Google Scholar
18. Peercy, P. S., in Laser Surface Treatment of Metals, Draper, C. W. & Mazzoldi, P., Eds, Martinus Nijhoff, Dordrecht, 1986) p. 57.CrossRefGoogle Scholar
19. FröhHngsdorf, J. & Stritzker, B. in Laser Treatment of Metals, Mordike, B. L., Ed, (Informationsgesellschaft, Oberursel, 1987) p. 63.Google Scholar
20. McCamy, J. W., Pedraza, A. J., & Lowndes, D. H., Mat. Res. Soc. Symp. Proc. 74 203 (1987).CrossRefGoogle Scholar
21. Pedraza, A. J., Godbole, M. J., Kenik, E. A., Pedraza, D. F. & Lowndes, D. H. Mat. Res. Soc. Symp. Proc. 74 185 (1987).Google Scholar
22. Jervis, T. R., Nastasi, M., Zocco, T. G., & Martin, J. A., Appl Phys. Lett. 53 75 (1988).Google Scholar
23. Jervis, T. R., Nastasi, M., Hirvonen, J. -P., & Zocco, T. G., American Institute of Physics Conf. Proc. 231652 (1991).Google Scholar
24. White, C. W., Narayan, J., & Young, R. T., Science 204 461 (1979).Google Scholar
25. Draper, C. W. & Poate, J. M., Int. Metal Rev. 30 85 (1985).Google Scholar
26. Von Alimén, M. in Glassy Metals II, Beck, H. & Güntherodt, H. -J., eds (Springer, Berlin, 1983) p. 261.CrossRefGoogle Scholar
27. Follstaedt, D. M., Knapp, J. A., Pope, L. E., Yost, F. G., & Picraux, S. T., Appl Phys. Lett. 45 529 (1984).Google Scholar
28. Nastasi, M., Hirvonen, J. -P., Zocco, T. G., & Jervis, T. R., J. Mater. Res. 5 1207 (1990).Google Scholar
29. Hirvonen, J. -P., Nastasi, M., Phillips, J. R., & Mayer, J. W., J. Vac. Sci. Technol. A4 2997 (1986).Google Scholar
30. Nasatasi, M. & Mayer, J. W., Mat. Sci. Reports 61 (1991).Google Scholar
31. Follstaedt, D. M., Knapp, J. A., & Peercy, P. S., J. of Non-Cryst. Solids 61 & 62 451 (1984).Google Scholar
32. Jervis, T. R., Hirvonen, J-P., & Nastasi, M., J. Mater. Res. 3 1104 (1988).Google Scholar
33. Jervis, T. R. & Hirvonen, J. -P., Wear 150 259 (1991).Google Scholar
34. Singer, I. L. & Wandass, J. H., in: Structure-Property Relationships in Surface-Modified Ceramics, McHargue, C. J., Kossowsky, R., & Hofer, W. O., (Kluwer Academic Publishers, Dordrecht, 1989) p 199.Google Scholar
35. Singh, R. K., Jagannadham, K, & Narayan, J., J. Mater. Res. 3 1119 (1988).Google Scholar
36. Jervis, T. R., Nastasi, M., & Hubbard, K. M., Appl Phys. Lett. 60 912 (1992).Google Scholar
37. Narayan, J., Fathy, D., Holland, O. W., Appleton, B. R., Davis, R. F., & Becher, P. F., J. Appl Phys. 56 1577 (1984).Google Scholar
38. Jervis, T. R., Hirvonen, J. -P., & Nastasi, M., J. Mat. Res. 6 146 (1991).CrossRefGoogle Scholar
39. Zaleski, M. A., Jervis, T. R., Mayer, J. W., In Press: J. Am. Ceram Soc.Google Scholar
40. Fischer, T. E. & Tomizowa, H., Wear 105 29 (1985).Google Scholar
41. Jervis, T. R., Nastasi, M., Hirvonen, J. -P., & Hubbard, K. M., In Press J. Am. Ceram Soc.Google Scholar
42. McHargue, C. J., in Structure-Property Relationships in Surface-Modified Ceramics, McHargue, C. J., Kossowsky, R., & Hofer, W. O., Eds. (Kluwer Academic Publishers, Dordrecht, 1989) p 117.Google Scholar
43. Nastasi, M. & Jervis, T. R., unpublished results.Google Scholar
44. Pedraza, A. J., Godbole, M. J., Kenik, E. A., Lowndes, D. H., & Thompson, J. R. Jr, J. Vac. Sci. Technol. A6 1763 (1988).Google Scholar
45. Godbole, M. J., Pedraza, A. J., Lowndes, D. H., & Kenik, E. A., J. Mater. Res. 4 1202 (1989).Google Scholar
46. Stupik, P. D., Jervis, T. R., Nastasi, M., Donovan, M. M., & Barron, A. R., Mat. Res. Soc. Symp. Proc. 170 155 (1990).Google Scholar
47. Jervis, T. R., Hubbard, K. M., & Zocco, T. G., Mater. Res. Soc. Symp Proc. 236 397 (1992).Google Scholar
48. Foster, L. A., Tesmer, J. R., Jervis, T. R., & Nastasi, M., In Press, Nucl. Inst. Meth. B (1993).Google Scholar
49. Boulmer-Leborgne, C., Hermann, J., Dubreuil, B., Brault, P., DeGiorgi, J. L., Luches, A., Martino, M., Perrone, A., Mihailescu, I. N., Ursu, I., Blondiaux, G., Debrun, J. L., Estrade, H., & Rousseau, B., Appl Suf. Sci. 54 349 (1992).CrossRefGoogle Scholar
50. Chan, S. -W., Dijkkamp, D., Wu, X. D., Venkatesan, T., & Chang, C. C., Mat. Res. Soc. Symp. Proc. 74 287 (1987).Google Scholar
51. Dijkkamp, D., Wu, X. D., Chan, S. -W., & Venkatesan, T., Mat. Res. Soc. Symp. Proc. 74 303 (1987).Google Scholar
52. D'Anna, E., Leggieri, G., Luches, A., Martino, M., Perrone, A., Mengucci, P., Mihailescu, I. N., Appl Surf. Sci. 54 353 (1992).Google Scholar
53. Smith, P. M., Reitano, R., & Aziz, M. J., Solute Trapping in Metals, This Volume.Google Scholar
54. Baer, D. R., Frydrych, D. J., & Jervis, T. R., in Environmental Degradation of Ion and Laser Beam Treated Surfaces, Was, G. S. & Grabowski, K., Eds. (The Metallurgical Society, Warrendale, PA 1989).Google Scholar
55. Narayan, J., Godbole, V. P., & White, C. W., Science 252 416 (1991).Google Scholar
56. Narayan, J., Godbole, V. P., Matera, G., & Singh, R. K., J. Appl Phys. 71966 (1992).Google Scholar
57. Tuckerman, D. B. & Schmidt, R. L., Proceedings of the 2nd International IEEE VLSI Multilevel Interconnection Conference, Santa Clara, CA (IEEE, New York, 1985) p. 24.Google Scholar
58. Mukai, R., Sasaki, N., & Nakano, M., Mat. Res. Soc. Symp. Proc. 74 229 (1987).CrossRefGoogle Scholar
59. Baseman, R. J., Kuan, T. -S., Aboelfotoh, M. O., Andreshak, J. C., Turene, F. A., Previti-Kelly, R. A., & Ryan, J. G., Mat. Res. Soc. Symp. Proc. 236 361 (1992).Google Scholar
60. Want, S. -Q., Ong, E., J. Vac. Sci. Technol. B10, 160 (1992).Google Scholar
61. Esrom, H., Mat. Res. Soc. Symp. Proc. 204 457 (1991).Google Scholar
62. Partridge, J. P., Pellegrino, J., Murphy, C., & Strutt, P. R., Mat. Res. Soc. Symp. Proc. 74 173 (1987).Google Scholar
63. Bergmann, H. W., Schubert, E., Schmatjko, K. J., & Dembowski, J., Thin Sol. Films 174 33 (1989).Google Scholar
64. Kinsman, G. & Duley, W. W., Appl Phys. Lett 54 7 (1989).Google Scholar
65. Kinsman, G. & Duley, W. W., Appl Phys. Lett 56 996 (1990).Google Scholar