Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T02:21:19.028Z Has data issue: false hasContentIssue false

Excimer Laser Annealed Poly-Si TFT Technologies

Published online by Cambridge University Press:  15 February 2011

Fujio Okumura
Affiliation:
Functional Devices Research Laboratories, NEC Corporation. Kawasaki 216, Japan.
Kenji Sera
Affiliation:
Functional Devices Research Laboratories, NEC Corporation. Kawasaki 216, Japan.
Hiroshi Tanabe
Affiliation:
Functional Devices Research Laboratories, NEC Corporation. Kawasaki 216, Japan.
Katsuhisa Yuda
Affiliation:
Functional Devices Research Laboratories, NEC Corporation. Kawasaki 216, Japan.
Hiroshi Okumura
Affiliation:
Functional Devices Research Laboratories, NEC Corporation. Kawasaki 216, Japan.
Get access

Abstract

This paper describes the excimer laser annealed (ELA) poly-Si TFT technologies in terms of excimer laser annealing of Si films, the leakage current, and the TFT stability. A laser energy density and a shot dependencies of TFT characteristics was analyzed by TEM, SEM, and Raman. The mobility increases with increasing not only the energy density but also the shot density. The mobility increase with the energy density is due to the grain size enlargement. On the other hand, the mobility increase up to 10 to 20 shots is due to a decrease of defects, including small grains, grain boundaries and defects inside grains. The contribution of grain-growth is small. The ELA TFT has a micro-offset structure to reduce the leakage current. Moreover, we have proposed a dynamic leakage current reduction structure. The combination of these technologies provides a sufficiently small leakage current for AMLCDs. The stability of the gate insulator was analyzed. The TFT shows negative threshold voltage shift under gate bias stress. This is due to water penetration and the subsequent field activated chemical reaction in the gate insulator. The dissociation of Si-OH bonds with hydrogen-bonded water was a fundamental contributor. The shift was suppressed sufficiently by hydrogen passivation. Obtained ELA TFTs;s have mobilities of over 100 cm2/Vsec, threshold voltages of less than 3 V, effective leakage currents of less than 10−13 A, and are stable more than 10 years.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsueda, Y., Ozawa, T., Nakamura, J., Takei, S., Kamakura, H., Okamoto, N., Japan Display' 92, 561 (1992).Google Scholar
2. Kobayashi, M., Nakazono, T., Mori, K., Nakamura, H., Sato, H., Nakagawa, M., and Harada, N., SID'94 Digest of Technical Papers, 75 (1994).Google Scholar
3. Yamashita, T., Matsumoto, T., Shimada, T., Akebi, Y., Kubo, M., Fujioka, K., Tsubota, K., Yoshimura, Y., Takafuji, Y., and Awane, K.. SID'94 Digest of Technical Papers, 83 (1994).Google Scholar
4. Okumura, F., Asada, H., Sera, K., Hirata, K., Kurakagi, K., Hirai, Y., Kaneko, S., Hamada, K., Kodama, N., Mineji, A., Saito, S., Ikeda, K., Miyakoshi, K., and Imajo, M., SID '94 Digest, 79, (1994).Google Scholar
5. Sera, K., Asada, H., Okumura, F., Tanabe, H., Nakamura, K., Sekine, H., Fujieda, I., Tujumura, S. and Kaneko, S., SID 93 Digest of Technical Papers, 356 (1993).Google Scholar
6. Nakamura, K., Asada, H., Akiyama, T., Sera, K., Tanabe, H., Okumura, F., Ito, K., Nakajima, H., and Saeki, H., SPIE Proceedings Vol. 2171, 67 (1994).Google Scholar
7. Kuriyama, H., Kiyama, S., Noguchi, S., Kuwahara, T., Ishida, S., Nohda, T., Sano, K., Iwata, H., Kawata, H., Osumi, M., Tsuda, S., Nakano, S., and Kuwano, Y., Japanes Journal of Applied Physics, vol. 30 12B 3700 (1991).Google Scholar
8. Ohshima, H., Hashizume, T., Matsuo, M., Inoue, S. and Nakazawa, T., SID 93 Digest of Technical Papers, 387 (1993)Google Scholar
9. Sun, Y., Chen, S., Mei, P., and Boyce, J. B., IDRC' 94 134 (1994).Google Scholar
10. Sera, K., Asada, H., Okumura, F., Tanabe, H., Nakamura, K., Tada, A., and Kaneko, S., SSDM'91 Extended Abstract 590 (1991).Google Scholar
11. Tanabe, H., Sera, K., Nakamura, K., Hirata, K., Yuda, K., and Okumura, F., NEC Research & Development, Vol. 35, 3254 (1994).Google Scholar
12. Proano, R.E., Misage, R.S. and Ast, D.G., IEEE Trans. Electron Devices, 36, 1915 (1989)Google Scholar
13. Tsu, R., Izu, M., Ovshinsky, S.R. and Poliak, F.H., Solid State Communs., 36, 817 (1980)Google Scholar
14. Iqbal, Z. and Veprek, S., J. Phys. C; Solid State Phys., 15, 377 (1982)Google Scholar
15. Cheong, Y.M., Marcus, H.L. and Adar, F., J. Mater. Res., 2, 902 (1987)Google Scholar
16. Nakashima, S. and Hangyo, M., IEEE J. Quantum Electronics, 25, 965 (1989)Google Scholar
17. Morozumi, S., Oguchi, K., Yazawa, S., Kodaira, T., Ohshima, H., and Mano, T., SID'83 Digest of Technical Papers, 156 (1983).Google Scholar
18. Nakazawa, K., Tanaka, K., Suyama, S., Kato, K., and Kohda, S., SID'90 Digest of Technical Papers, 311 (1990).Google Scholar
19. Hayashi, Y., Koike, S., Kunii, M., Tsubota, H., and Maekawa, T., Proc. of Euro-Display' 93 465 (1993).Google Scholar
20. Okumura, F. and Sera, K., AM-LCD'94 Digest of technical papers, 24 (1994).Google Scholar
21. Yuda, K., Sera, K., Uesugi, F., Nishiyama, I., and Okumura, F., IEDM'94 Technical Digest, 519 (1994)Google Scholar
22. Noyori, M., Ishihara, T., and Higuchi, H., Proc. Int. Reliability Phys. Symp., 113 (1982).Google Scholar
23. Okuyama, K., Kubota, K., Hashimoto, T., Ikeda, S., and Koike, A., IEDM'93 Technical Digest, 527 (1993).Google Scholar
24. Hirashita, N., Tokitoh, S., and Uchida, H., Jpn. J. Appl. Phys., Vol. 32, 4, 1787 (1993).Google Scholar