Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-26T04:28:37.730Z Has data issue: false hasContentIssue false

The Evolution of Titanium-Silicon Interfaces as Monitored by X-Ray Diffraction

Published online by Cambridge University Press:  25 February 2011

Thomas Novet
Affiliation:
University of Oregon, Department of Chemistry and Materials Science Institute Eugene, Oregon 97403
John McConnell
Affiliation:
University of Oregon, Department of Chemistry and Materials Science Institute Eugene, Oregon 97403
David C. Johnson
Affiliation:
University of Oregon, Department of Chemistry and Materials Science Institute Eugene, Oregon 97403
Get access

Abstract

Reactions in solids occur at interfaces. Following interfacial reactions has been difficult due to the small fraction of material making up the interfaces. In this paper, variable-temperature grazing x-ray diffraction is used to probe interfacial reactions in modulated ultra-thin film layered composites. This technique permits the monitoring of solid-state reactions in their earliest stages. The initial evolution of titanium-silicon interfaces within a superlattice is discussed. Our data suggest that the classical approach of modeling diffusion via Fick's laws is insufficient to describe the initial interdiffusion or mixing reaction at an interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Murarka, S. P., Suicides for VLSI Applications. (Academic Press, New York, (1983)Google Scholar
2 Chambers, S. A., Hill, D. M., Xu, F., and Weaver, J. H., Phys. Rev. B, 31, 634 (1987)Google Scholar
3 Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987)Google Scholar
4 De Avillez, R. R., Clevenger, L. A., Thompson, C. V., and Tu, K. N., J. Mater. Res. 5 (1990)Google Scholar
5 Brašen, D., Willens, R. H., Nakahara, S., and Boone, T., J. Appl. Phys. 60, 3527 (1986)CrossRefGoogle Scholar
6 Hung, L. S., Gyulai, J., Mayer, J. W., Lau, S. S., and Nicolet, M. -A., J. Appl. Phys. 54, 5076 (1983)Google Scholar
7 Raaijmakers, I. J. M. M., Reader, A. H., and Oosting, P. H., J. Appl. Phys. 61, 2790 (1988)Google Scholar
8 Beyers, R. and Sinclair, R., J. Appl. Phys. 52, 5240 (1985)Google Scholar
9 Hilliard, H. E. and Cook, J. E., J. Appl. Phys. 40, 2191 (1969)Google Scholar
10 Woolfson, M. M., An Introduction to X-rav Crystallography. (Cambridge University Press, London, 1970)Google Scholar
11 Nevot, L., Pardo, B., and Corno, J., Revue Phys. Appl. 22, 1675 (1988)Google Scholar
12 Chrzan, D. and Dutta, P., J. Appl. Phys. 52, 1504 (1986)Google Scholar
13 Rosenblum, M. P., Spaepen, F., and Turnbull, D., Appl. Phys Lett. 37 184 (1980)Google Scholar
14 Prokeš, S. M. and Spaepen, F., Appl. Phys. Lett. 47 234 (1985)CrossRefGoogle Scholar
15 Fleming, R. M., McWhan, D. B., Gossard, A. C., Wiegmann, W., and Logan, R. A., J. Appl. Phys. 51, 357 (1980)Google Scholar
16 Fister, L., Li, X. -M., Novet, T., McConnell, J., and Johnson, D. C., in preparationGoogle Scholar
17 Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980)Google Scholar