Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T02:19:31.405Z Has data issue: false hasContentIssue false

Evolution of the Free Volume during Homogeneous Flow of a Metallic Glass

Published online by Cambridge University Press:  01 February 2011

M. Heggen
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
F. Spaepen
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
M. Feuerbacher
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Glassy Pd41Ni10Cu29P20 was creep-tested in compression at constant true stress. The defect concentrations were shown to be reversible with reproducible kinetics. The results could be fit better with a defect creation rate that is proportional to the applied power density than with one that depends on the strain rate only. The dilatation mechanism for creation of free volume is inefficient in energy and generation of free volume.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahn, R.W., Pratten, N.A., Scott, M.G., Sinning, H.R. and Leonardson, L., Symp. Rapidly Solidified Mat., eds. Kear, B.H. and Giessen, B.C., North-Holland (1984), p. 241.Google Scholar
2. Chen, H.S. and Chuang, S.Y., Appl. Phys. Lett. 27, 316 (1975).Google Scholar
3. Flores, K.M., Suh, D., Dauskardt, R.H., Asoka-Kumar, P., Sterne, P.A. and Howell, R.H., J. Mat. Res. 17, 1153 (2002).Google Scholar
4. Donovan, P.E. and Stobbs, W.M., Acta metall. 29, 1419 (1981).Google Scholar
5. Li, J., Spaepen, F. and Hufnagel, T.C., Phil. Mag. A 82, 2623 (2002).Google Scholar
6. Reynolds, O., Phil. Mag. S. 5 20, 469 (1885).Google Scholar
7. Taylor, D.W., Fundamentals of Soil Mechanics, Wiley (1948).Google Scholar
8. Spaepen, F., Acta metall. 25, 407 (1977).Google Scholar
9. Steif, P.S., Spaepen, F. and Hutchinson, J.W., Acta metall. 30, 447 (1982).Google Scholar
10. Falk, M.L. and Langer, J.S., Phys. Rev. E 57, 7192 (1998).Google Scholar
11. de Hey, P., Sietsma, J. and van den Beukel, A., Acta metall. 46, 5873 (1998).Google Scholar
12. Heggen, M., Spaepen, F. and Feuerbacher, M., Mat. Sci. Eng. A., in press.Google Scholar
13. Johnson, W.L., Lu, J. and Demetriou, M.D., Intermetallics 10, 1039 (2002).Google Scholar
14. Lu, J., Ravichandran, G. and Johnson, W.L., Acta mater. 51, 3429 (2003).Google Scholar
15. Blétry, M., Guyot, P., Bréchet, Y., Blandin, J.J. and Soubeyroux, J.L., in press.Google Scholar
16. Taub, A.I. and Spaepen, F., Acta metall. 28, 1781 (1980).Google Scholar
17. Spaepen, F., in Physics of Defects, Les Houches Lectures XXXV, ed. Balian, R., North-Holland (1981), p. 133.Google Scholar
18. Spaepen, F., Mat. Sci. Eng. A179/180, 81 (1994).Google Scholar
19. Argon, A.S., Acta metall. 27, 47 (1997).Google Scholar
20. Cohen, M.H. and Turnbull, D., J. Chem. Phys. 31, 1164 (1959).Google Scholar
21. Tsao, S.S. and Spaepen, F., Acta metall. 33, 881 (1985).Google Scholar
22. Volkert, C.A. and Spaepen, F., Mat. Sci. Eng. A 97, 449 (1988).Google Scholar
23. Volkert, C.A. and Spaepen, F., Acta metall. 37, 1355 (1989).Google Scholar
24. Duine, P.A., Sietsma, J. and van den Beukel, A., Acta metall. mater. 40, 743 (1992).Google Scholar
25. Kato, H., Inoue, A. and Chen, H.S., Appl. Phys. Lett. 79, 4515 (2001).Google Scholar
26. Heggen, M., Spaepen, F. and Feuerbacher, M., to be published.Google Scholar
27. van den Beukel, A. and Sietsma, J., Acta metall. mater. 38, 383 (1990).Google Scholar