Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T20:51:10.184Z Has data issue: false hasContentIssue false

Evolution of Ion Beam Synthesized Au Nanoclusters in SiO2 under Ion Irradiation

Published online by Cambridge University Press:  17 March 2011

Bernd Schmidt
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung PO-BOX 510119, 01314 Dresden, Germany
Karl-Heinz Heinig
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung PO-BOX 510119, 01314 Dresden, Germany
Arndt Mücklich
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung PO-BOX 510119, 01314 Dresden, Germany
Get access

Abstract

The evolution of the mean size and the size distribution of Au nanoclusters (NCs) under high-energy ion irradiation has been studied. Au NCs were synthesized in a 480 nm thick SiO2 layer by 330 keV Au+ implantation and subsequent annealing at T = 1000 °C for 1h in dry O2. XTEM images show a 70 nm thick layer of Au NCs, being centered at the projected ion range Rp(330keV) = 100 nm, having a mean NC size of 5 nm at Rp, and resembling the broad Lifshiz-Slyozov-Wagner (LSW) size distribution of diffusion controlled Ostwald ripening. Post-irradiation of the Au NCs by 4.5 MeV gold ions was used in order to tailor their size and size distribution. The high-energy Au+ irradiations were performed at 190...210 °C with a fluence of (0.5...1.0)×1016 cm-2. By the post-irradiation no gold was deposited into the SiO2 layer, the Au+ ions come to rest in the (001)Si substrate at Rp(4.5MeV) = 1 [.proportional]m. XTEM images of the post-irradiated Au NCs show a strong decrease of their mean size as well as the width of their size distribution. The observed NC evolution under ion irradiation agrees with recent theoretical predictions and kinetic Monte-Carlo simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heinig, K.-H. and Strobel, M., presented at the 2000 E-MRS Meeting, Strasbourg, May 30 - June 2, Nucl. Instr. Meth. B, in press.Google Scholar
2. Ila, D., Williams, E.K., Smith, C.C., Poker, D.B., Hensley, D.K., Clatt, C., and Kalbitzer, S., Nucl. Instr. Meth. B148, 1012 (1999).Google Scholar
3. Rizza, G.C., Strobel, M., Heinig, K.-H., and Bernas, H., presented at the 2000 E-MRS Meeting, Strasbourg, May 30 - June 2, Nucl. Instr. Meth. B, in press.Google Scholar
4. Nelson, R.S., J. Nucl. Mat. 44, 318 (1972).Google Scholar
5. Schmitz, G., Ewert, J.C., Haider, F., Harbsmeier, F., and Uhrmacher, M, in Solid-State Phase Transformation '99, ed. Koiwa, M., Otsuka, K., and Miyazaki, T. (Japan Institute of Metals, 1999) pp. 413416.Google Scholar
6. Enrique, R. and Bellon, P., Phys. Rev. Lett. 84, 2885 (2000).Google Scholar
7. Rizza, G., Strobel, M., Heinig, K.-H. and Bernas, H., Nucl. Instr. Meth. in press.Google Scholar
8. Enrique, R.A. and Bellon, P., Phys. Rev. Lett. 84, 2885 (2000).Google Scholar
9. Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985.Google Scholar
10. Lifshitz, I.M., Slyozov, V.V., J. Phys. Chem. 19, 35 (1961); C. Wagner, Z. Elektrochem. 65, 581 (1961).Google Scholar
11. Heinig, K.-H., Schmidt, B., Strobel, M., Bernas, H., these proceedings (2001).Google Scholar