Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-30T21:10:29.726Z Has data issue: false hasContentIssue false

Evidence for a defect-assisted low resistive conductivity in cw laser beam mixed Au/Te/Au/GaAs contacts.

Published online by Cambridge University Press:  03 September 2012

J. Watté
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
R. E. Silverans
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
H. Münder
Affiliation:
Institut für Schicht-und Ionentechnik, KFA Jülich, Postfach 1913, 5170 Jülich, Germany
K. Wuyts
Affiliation:
Instituut voor Kern-en Stralingsfysika, K. U. Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
Get access

Abstract

CW laser beam mixed Au/Te/Au/n-GaAs contacts have been studied by RBS, Möss-bauer and Raman spectroscopy. For both low and high laser power mixing, resulting in respectively Schottky-type and ohmic contacts, the formation of non-uniformly dispersed Ga2Te3 crystallites was observed. However, for the ohmic contacts the formation of a high density of defect complexes in the GaAs surface layers was revealed. The experimental results suggest that the ohmic conduction mechanism is based on a hopping or a defect assisted tunneling process through the contact zone, consistent with the amorphous/highly defective heterojunction model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Baeri, P., Philos. Mag. B, 61, 587 (1990)Google Scholar
[2] Yao, H. and Compaan, A., Appl. Phys. Lett. 51, 147 (1990)CrossRefGoogle Scholar
[3] Zhang, T., Sigmon, T. W., Weiner, K. H., and Carey, P. G., Appl. Phys. Lett. 55, 580 (1989)Google Scholar
[4] Wuyts, K., Watté, J., Silverans, R. E., Van Hove, M., and Van Rossum, M., Appl. Phys. Lett. 59, 1779 (1991)CrossRefGoogle Scholar
[5] Sebestyen, T., Solid State Electron. 25, 543 (1982)Google Scholar
[6] Lee, M. J. G., Reifenberger, R., Robins, E. S., and Lindennayer, H. G., J. Appl. Phys. 57, 4996 (1980)Google Scholar
[7] Wuyts, K., Watté, J., Vanderstraeten, H., Langouche, G., Silverans, R. E., Münder, H., Berger, M. G., Van Hove, M., Bender, H., and Van Rossum, M., Phys. Rev. B, 45, May 15 issue (1992)Google Scholar
[8] Doolittle, L. R., Nucl. Instr. Meth. B, 9, 344 (1985)Google Scholar
[9] Münder, H., Andrzejak, C., Berger, M. G., Lüth, H., Borghs, G., Wuyts, K., Watté, J., and Silverans, R. E., J. Appl. Phys. 71, 739 (1992)CrossRefGoogle Scholar
[10] Abstreiter, G., Cardona, M., and Pinczuk, A., in Light Scattering in Solids IV, Topics Appl. Phys. 54, edited by Cardona, M. and Güntherhodt, G. (Springer- Verlag, Berlin, 1984)Google Scholar
[11] Wuyts, K., Watté, J., Langouche, G., Silverans, R. E., Zégbé, G., and Jumas, J. C., J. Appl. Phys. 71, 739 (1992)Google Scholar
[12] Wuyts, K., Langouche, G., Van Rossum, M., and Silverans, R. E., Phys. Rev. B 45, 6297 (1992)Google Scholar
[13] Nissim, Y., Greiner, M., Falster, R. J., Gibbons, J. F., Chye, P., and Huang, C., Mater. Res. Soc. Symp. Proc. 4, 677 (1982)Google Scholar
[14] Hwang, C. J., J. Appl. Phys. 40, 4584 (1969)Google Scholar