Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T23:55:03.399Z Has data issue: false hasContentIssue false

Evaluation of the Dice Method as A Tool For Amorphous Silicon Solar Cell Optimization

Published online by Cambridge University Press:  21 February 2011

M. B. Von Der Linden
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL - 3508 TA Utrecht, The Netherlands.
R. E. I. Schropp
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL - 3508 TA Utrecht, The Netherlands.
J. G. F. Stammeijer*
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL - 3508 TA Utrecht, The Netherlands.
W. F. Van Der Weg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL - 3508 TA Utrecht, The Netherlands.
*
* Current Address: K/SEPL, Rijswijk, The Netherlands.
Get access

Abstract

Information about the spatial collection efficiency in a-Si:H solar cells is obtained from the Dynamic Inner Collection Efficiency (DICE) technique. With this non-destructive method single junction solar cells with efficiencies up to 10 % have been analysed under operating conditions. The influence of i-layer deposition parameters, such as the temperature and deposition time, on the spatial collection efficiency have been investigated. Deposition parameters for the i-layer have a large influence on the collection from the first 100 nm from the p+/i-interface. A higher i-layer deposition temperature or a longer deposition time results in a higher internal collection efficiency at a depth of 70 nm into the i-layer. Also results of DICE experiments on various textured TCO substrates are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takahama, T., Isomura, M., Tsuda, S., Tarui, H., Hishikawa, Y., Nakamura, N., Nakashima, Y., Matsuoka, T., Nishiwaki, H., Ohnishi, M., Nakano, S. and Kuwano, Y., Jap. J. of Appl. Phys. 25, 1538 (1986).Google Scholar
2. Ohnishi, M., Takahama, T. and Kuwano, Y. in Amorphous Silicon Technology, 1991, edited by Madan, A., Hamakawa, Y., Thompson, M., Taylor, P. and LeComber, P. (Mater. Res. Soc. Proc. 219, Anaheim, 1991) pp. 421432.Google Scholar
3. Nakano, S., Okamoto, S., Takahama, T., Nishikuni, M., Ninomiya, K., Nakamura, N., Tsuda, S., Ohnishi, M., Kishi, Y. and Kuwano, Y. in Proc, of the 21st IEEE Photovoltaic Specialists Conference, Kissimee, 1990 pp. 16561661.Google Scholar
4. von der Linden, M.B., Landweer, G., Schropp, R.E.I., Bezemer, J. and van der Weg, W.F. in Proc, of the Tenth E.C. Photovoltaic Solar Energy Conference, Lisbon, 1991, edited by Luque, A., Sala, G., Palz, W., Dos Santos, G. and Helm, P. (Kluwer Academic, Dordrecht, the Netherlands, 1991) pp. 224227.Google Scholar
5. Schropp, R.E.I., Meiling, H., van Sark, W.G.J.H.M., Stammeijer, J., Bezemer, J. and van der Weg, W.F. in Proc, of the Tenth E.C. Photovoltaic Solar Energy Conference, Lisbon, 1991, edited by Luque, A., Sala, G., Palz, W., Dos Santos, G. and Helm, P. (Kluwer Academic, Dordrecht, the Netherlands, 1991) pp. 10871090.Google Scholar