Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T17:46:52.360Z Has data issue: false hasContentIssue false

Estimation of the Crystallinity of P-type Hydrogenated Nanocrystalline Cubic Silicon Carbide by Conductive Atomic Force Microscopy

Published online by Cambridge University Press:  10 May 2012

Daisuke Hamashita
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
Yasuyoshi Kurokawa
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
Makoto Konagai
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan Photovoltaic Research Center (PVREC), Tokyo Institute of Technology, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
Get access

Abstract

P-type hydrogenated nanocrystalline cubic silicon carbide is a promising material for the emitter of n-type crystalline silicon heterojunction solar cell due to its lower light absorption and wider bandgap of 2.2 eV. The electrical properties of hydrogenated nanocrystalline cubic silicon carbide can be influenced by its crystallinity. In this study, we propose the use of conductive atomic force microscopy (Conductive-AFM) to evaluate the crystalline volume fraction (fc) of p-nc-3C-SiC:H thin films (20∼30 nm) as a new method instead of Raman scattering spectroscopy, X-ray diffraction, and spectroscopic ellipsometry.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kinoshita, T., Fujishima, D., Yano, A., Ogane, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Tokuoka, N., Kanno, H., Sakata, H., Taguchi, M., Maruyama, E., Proceedings of the 26th European Photovoltaic Solar Energy Conference, (2011) 871874 Google Scholar
Miyajima, Shinsuke, Yamada, Akira, Konagai, Makoto, Japanese Journal of Applied Physics, 43 (2004) 11901192 CrossRefGoogle Scholar
Hamashita, D., Kurokawa, Y., Konagai, M., Proceedings of the 37th IEEE Photovoltaic Specialist Conference, (2011)Google Scholar
Hamashita, D., Miyajima, S., Yamada, A., Konagai, M., Proceedings of the 35th IEEE Photovoltaic Specialist Conference, (2010) 36673670 Google Scholar
Miyajima, S., Sawamura, M., Yamada, A., Konagai, M., Japanese Journal of Applied Physics, 46 No. 28 (2007) 693695 CrossRefGoogle Scholar
Miyajima, S., Sawamura, M., Yamada, A., Konagai, M., Journal of Non-Crystalline Solids, 354 (2008) 23502354 CrossRefGoogle Scholar
Rezek, B., Stuchlik, J., Fejfar, A., Kocka, J., Journal of Applied Physics, 92 (2002) 587 CrossRefGoogle Scholar
Shen, Z., Eguchi, M., Gotoh, T., Yoshida, N., Itoh, T., Nonomura, S., Thin Solid Films, 516 (2008) 588592 CrossRefGoogle Scholar
Hamashita, D., Kurokawa, Y., Konagai, M., Energy Procedia, 10 (2012) 1419 CrossRefGoogle Scholar
Bietsch, A., Alexander Schneider, M., Bruno, M., Journal of Vaccum Science and Technology B, 18 (2000) 1160.CrossRefGoogle Scholar
De Cesare, G., Galluzzi, F., Guattari, G., Leo, G. and Vincenzoni, R., Bemporad, E., Diamond and Related Materials, 2 (1993) 773777 CrossRefGoogle Scholar
Miyajima, S., Sawamura, M., Yamada, A., and Konagai, M., Japanese Journal of Applied Physics, 46 No. 28 (2007) 693695 CrossRefGoogle Scholar