Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T05:06:30.526Z Has data issue: false hasContentIssue false

The Estimation and revision of barrier heights in 4H- SiC and 6H-sic Schottky Diodes

Published online by Cambridge University Press:  10 February 2011

You-Sang Lee
Affiliation:
School of Electrical Eng., Seoul Nat'l Univ., 56-1 Shinlim-dong, Kwanak-ku, 151–724 Seoul, Korea, +82-2-880-7254, +82-2-871-5974, E-mail: igbt@chollian.net
D.-Y. Kim
Affiliation:
School of Electrical Eng., Seoul Nat'l Univ., 56-1 Shinlim-dong, Kwanak-ku, 151–724 Seoul, Korea, +82-2-880-7254, +82-2-871-5974, E-mail: igbt@chollian.net
J.-K. Oh
Affiliation:
School of Electrical Eng., Seoul Nat'l Univ., 56-1 Shinlim-dong, Kwanak-ku, 151–724 Seoul, Korea, +82-2-880-7254, +82-2-871-5974, E-mail: igbt@chollian.net
M.-K. Han
Affiliation:
School of Electrical Eng., Seoul Nat'l Univ., 56-1 Shinlim-dong, Kwanak-ku, 151–724 Seoul, Korea, +82-2-880-7254, +82-2-871-5974, E-mail: igbt@chollian.net
Y.-I. Choi
Affiliation:
School of Electronics Eng., Ajou Univ., 5 Wonchun-dong, Suwon 442–749, Korea
Get access

Abstract

The barrier heights of various Schottky diodes in n-type 4H-SiC and 6H-SiC is estimated from published data at Si-face and C-face, respectively, employing the LSM (least square method). It is found that the barrier height in SiC Schottky diode is a linear function of metal work function as φB. =a φm + b. The a is about 0.63 ∼ 0.72. The already established analytic expression in [9] is compared with the estimated linear expression and revised by employing the empirical factor, α between the upper and lower boundary of interface state density, DIT. The values of a lie in 1.65 ∼ 32.1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waldrop, J. R., Grant, R. W., et al., J. Appl. Phys., Vol.72, No.10, pp. 47574760 (1992).Google Scholar
2. Waldrop, J. R., Grant, R. W., Appl. Phys. Lett., Vol.62, pp.26852687 (1993).Google Scholar
3. Karmann, S., Suttrop, W., Schoner, A., et al., J. Appl. Phys., Vol.72, pp. 54375442 (1992).Google Scholar
4. Itoh, A., Akita, H., Kitomo, T., and Matsunami, H., Appl. Phys. Lett., Vol.65, pp. 14001402 (1994).Google Scholar
5. Itoh, A., Kitomo, T., and Matsunami, H., ‘Proc. 95 ISPSD, pp. 101106 (1995).Google Scholar
6. Lipkin, L. A. and Palmour, J. W., J. lectronic Materials, Vol.25, No.5, pp. 909915 (1996)Google Scholar
7. Lundberg, Nils and Ostling, Mikael, J. Electrochem. Soc., Vol.143, No.5, pp. 16621667 (1996).Google Scholar
8. Wu, S. Y. and Campbell, R. B., Solid-State Electronics, Vol.17, pp.683687 (1974).Google Scholar
9. Sze, S. M., Physics of Semiconductor Devices, 2nd Edition, Wiley, pp. 270297 (1981)Google Scholar
10. Sheppard, Scott T., Melloch, Michael R., and Cooper, James A., Jr.,IEEE Trans. ED., Vol.41., No.7, pp. 12571263 (1994).Google Scholar
11. Weitzel, Charles E., Palmour, John W., Carter, Calvin H., Jr., Moore, Karen, Nordquist, Kevin J., et al., IEEE Trans.ED, Vol.43, No. 10, Oct., pp. 17321739 (1996)Google Scholar
12. Bhatnagar, Mohit and Baliga, B. Jayant, IEEE Trans. ED., Vol.40, No.3, Mar., pp.645655 (1993)Google Scholar
13. Moore, Karen E., Weitzel, Charles E., Nordquist, Kevin J., et.al., IEEE EDL., Vol.18, No.2, Feb., pp.6970 (1997)Google Scholar
14. Melloch, M. R. and Cooper, J. A., Jr., MRS Bulletin, Mar., Vol.22, No.3, pp.4247 (1997)Google Scholar
15. Brown, Dale M., Ghezzo, Mario, Kretchmer, James, et al. IEEE Trans. ED, Vol.41, No.4, Apr, pp.618620 (1994)Google Scholar
16. Werner, Jurgen H. and Guttler, Herbert H., J. Appl. Phys., Vol.69, No.3, pp. 15221533 (1991).Google Scholar
17. Larkin, D. J., MRS Bulletin, Mar., Vol.22, No.3, pp.3641 (1997)Google Scholar