Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T17:44:58.197Z Has data issue: false hasContentIssue false

ESR Study of Electrochemically Doped Chalcogenide Nanotubes

Published online by Cambridge University Press:  10 February 2011

Denis Arcon
Affiliation:
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Andrej Zorko
Affiliation:
Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Pavel Cevc
Affiliation:
Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Ales Mrzel
Affiliation:
Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Maja Remskar
Affiliation:
Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Dragan Mihailovic
Affiliation:
Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Robert Dominko
Affiliation:
National Chemistry Institute, Hajdrihova 19, 1000 Ljubljana, Slovenia
Miran Gaberscek
Affiliation:
National Chemistry Institute, Hajdrihova 19, 1000 Ljubljana, Slovenia
Get access

Abstract

Electrochemical activity of differently pretreated single-wall subnanometer-diameter molybdenum disulfide tubes (nMoS2) was tested and compared with layered MoS2 material. In as prepared and de-iodized nMoS2 samples a significant increase in the charge capacity has been found compared to the one measured in dispersed nMoS2 or layered MoS2. Enhanced electrochemical activity has been attributed to a particular one-dimensional topology of nanotubes bundles. Electrochemically doped samples were then studied with X-band ESR. While undoped nMoS2 show no X-band ESR signal between room temperature and 4 K we found in heavily doped nMoS2 samples two distinct ESR components: a narrow component with a linewidth of few Guass and a broad component with a linewidth of more than 800 G. The broad ESR component is characteristic of Mo d-orbital-derived band. The temperature dependence of the ESR spin susceptibility and the linewidth of the broad ESR component can be discussed either in terms of conducting electrons coupled to defects or in terms of random-exchange Mo Heisenberg chain model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Gao, B., Kleinhammes, A., Tang, X.P., Bower, C., Fleming, L., Wu, Y., and Zhou, O., Chem. Phys. Lett. 307, 153 (1999).Google Scholar
3. Cleye, A., Rahman, S., Fischer, J.E., Sirenko, A., Sumanasekera, G.U., and Eklund, P.C., Chem. Phys. Lett. 333, 16 (2001).Google Scholar
4. Bower, C., Kleinhammes, A., Wu, Y., and Zhou, O., Chem. Phys. Lett. 288, 481 (1998).Google Scholar
5. Metenier, K., Duclaux, L., Gaucher, H., Salvetat, J.P., Lauginie, P., Bonnamy, S., and Beguin, F., p. 51, “Electronic Properties of Novel Materials – Progress in Molecular Nanostructures”, Eds. Kuzmany, H., Fink, J., Mehring, M., and Roth, S., AIP, New York 1998.Google Scholar
6. Shimoda, H., Gao, B., Tang, X.P., Kleinhammes, A., Flemming, L., Wu, Y., and Zhou, O., Phys. Rev. Lett. 88, 015502 (2001).Google Scholar
7. Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Demsar, J., Stadelmann, P., Levy, F., Mihailovic, D., Science 292, 479 (2001).Google Scholar
8. Whittingham, M. S., J. Solid State Chem. 29, 303 (1979).Google Scholar
9. Dominko, R., Gaberscek, M., Arcon, D., Mrzel, A., Remskar, M., Mihailovic, D., Pejovnik, S., and Jamnik, J., accepted for a publication.Google Scholar
10. Arcon, D., Zorko, A., Cevc, P., Mrzel, A.,Remskar, M., Dominko, R., Gaberscek, M., and Mihailovic, D., Phys. Rev. B67, 125423 (2003).Google Scholar
11. Bandow, S., Maruyama, Y., Bi, X.X., Ochoa, R., Holden, J.M., Lee, W.T., and Eklund, P.C., Mat. Sci. Eng. A204, 222 (1995).Google Scholar
12. Seifert, G., Terrones, H., Terrones, M., Jungnickel, G., and Frauenheim, T., Phys. Rev. Lett. 85, 146 (2000).Google Scholar
13. Mihailovic, D., Jaglicic, Z.,Arcon, D.,Mrzel, A., Zorko, A., Remskar, M., Kabanov, V.V., Dominko, R., Gaberscek, M., Gomez-Garcia, C.J., Martinez-Agudo, J.M., and Coronado, E., Phys. Rev. Lett. 90, 146401 (2003).Google Scholar