Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T06:03:30.443Z Has data issue: false hasContentIssue false

Er-Doping of Gan and Related Alloys

Published online by Cambridge University Press:  10 February 2011

S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 3211;
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 3211;
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville FL 3211;
R. N. Schwartz
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
J. M. Zavada
Affiliation:
US Army Research Laboratory, RTP, NC 27709
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
Get access

Abstract

Er incorporation into GaN, AIN, MAIN and InGaN can be achieved using either direct ion implantation or by doping during Metal Organic Molecular Beam Epitaxy using metalorganic or elemental sources. When co-implanted with 0 and annealed between 600–800°C, strong luminescence at 1.54pm from optically excited Er3+ is detected in both binary nitrides and there was no measurable diffusion of Er in any of the materials. The low vapor pressures of the gaseous source compounds (erbium 2, 2, 2, 6-tetramethyl-3, 5-heptanedionate for Er + O; erbium bistrimethylsilylamide for Er) makes transport difficult unless high bubbler temperatures are used. Er concentrations up to ∼3×1021cm−3 in AIN have been obtained using a solid Er source. Microdisk laser structures with Er-doped active layers have been fabricated using a novel KOH selective wet etch and Cl2/CH4/H2/Ar dry etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, S., Imai, T. and Ito, T., J. Lightwave Technol. 9 161 1991 Google Scholar
2. Mollenauer, L. F., Evangelides, S. G. and Haus, H. A., J. Lightwave Technol. 9 144 (1991).Google Scholar
3. Integrated Optoelectronics, ed. Dagenais, M., Leheny, R. F., Crow, J. (Academic Press, San Diego, 1995).Google Scholar
4. Zavada, J. M. and Zhang, D., Solid State Electron. 38 1285 (1995).Google Scholar
5. Coffa, S., Franzo, G., Priolo, F., Polman, A. and Sema, R., Phys. Rev. B. 49 16313 (1994).Google Scholar
6. Ennen, H., Pomrenke, G., Axmann, A., Hagyl, W. and Schneider, J., Appl. Phys. Lett. 46 381 (1985)Google Scholar
7. Xie, Y. H., Fitzgerald, C. A. and Mii, Y. J., J. Appl. Phys. 70 3233 (1991).Google Scholar
8. Polman, A., Cushter, J. S., Smoeks, E. and van der Hoven, G. N., Nucl. Instr. Meth. B. 80/81 653 (1993).Google Scholar
9. Coffa, S., Priolo, F., Franzo, G., Bellani, V., Gamera, A. and Spinella, C., Phys. Rev. B48 11782 (1993).Google Scholar
10. Eaglesham, D. J., Michel, J., Fitzgerald, E. A., Jacobson, D. C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y. H. and Kimerling, L. C., Appl. Phys. Lett. 48 2797 (1991).Google Scholar
11. Ren, F. Y. G., Michel, J., Paduano, Z. S., Zhang, B., Kitagawa, H., Jacobson, D. C., Poate, J. M. and Kimerling, L. C., Mat. Res. Soc. Symp. Proc. 301 87 (1993).Google Scholar
12. Franzo, G., Priolo, F., Coffa, S., Polman, A. and Casnera, A., Appl. Phys. Lett. 64 2235 (1994).Google Scholar
13. after Hovers, G. N. van der Ph. D. Thesis (1995).Google Scholar
14. Jiang, G. C., Chang, L. B., Chang, G. H. and Lu, L. S., J. Cryst. Growth 152 127 (1995).Google Scholar
15. Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M. and Citrin, P. H., Appl. Phys. Lett. 61 2181 (1992).Google Scholar
16. Priolo, F., Coffa, S., Franzo, G., Spinella, C., Carsera, A. and Bellani, V., J. Appl. Phys. 74 4936 (1993).Google Scholar
17. Nakata, J., Taniguchi, M. and Takahei, K., Appl. Phys. Lett. 61 2665 (1992).Google Scholar
18. Kozanecki, A., Chan, M., Jeynes, C., Sealy, B. J. and Homewood, K., Solid St. Comm. 78 763 (1991).Google Scholar
19. Klein, P. B. and Pomrenke, G. S., Electron. Lett. 24 1502 (1988).Google Scholar
20. Favennec, P. N., Haridon, H. L., Salvi, M., Moutonnet, D. and Cuillou, Y. L., Electron. Lett. 25 718 (1989).Google Scholar
21. Neuhalfen, A. J. and Wessels, B. W., Appl. Phys. Lett. 59 2317 (1991).Google Scholar
22. Chu, D. Y., Wang, X. Z., Bi, W. G., Espindola, R. P., Wu, S. L., Wessels, B. W., Tu, C. W. and Ho, S. T., Appl. Phys. Lett. 66 1097 (1995).Google Scholar
23. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T. and Zavada, J. M., Appl. Phys. Lett. 65 992 (1994).Google Scholar
24. Qui, C. H., Leksono, M. W., Pankove, J. I., Toruik, J. T., Feurstein, R. J. and Namavar, F., Appl. Phys. Lett. 66 562 (1995).Google Scholar
25. see for example Redwing, J. M., Kuech, T. F., Jordon, D. C., Vararstra, B. A. and Lau, S. S., J. Appl. Phys. 76 1585 (1994).Google Scholar
26. Maruska, H. P. (unpublished, 1994).Google Scholar
27. Pankove, J. I. and Hutchby, J. A., Appl. Phys. Lett. 24 281 (1974).Google Scholar
28. Abernathy, C. R., Mat. Sci. Eng. Rep. 14 203 (1995).Google Scholar
29. Abernathy, C. R., Pearton, S. J., MacKenzie, J. D., Mileham, J. R., Bharatan, S. R., Krishanamothy, V., Jones, K. S., Crawford, M. H., Shul, R. J., Kilconyne, S. P., Zavada, J. M., Zhang, D. and Kolbas, R. M., Solid State Electron. 39 311 (1996)Google Scholar
30. Shul, R. J., Kilcoyne, S. P., Crawford, M. H., Parmeter, J. E., Vartuli, C. B., Abernathy, C. R. and Pearton, S. J. 66 1761 (1995).Google Scholar
31. Pearton, S. J., Abernathy, C. R. and Ren, F., Appl. Phys. Lett. 64 2294 (1994).Google Scholar
32. Mileham, J. R., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Shul, R. J. and Kilcoyne, S. P., Appl. Phys. Lett. 67 1119 (1995).Google Scholar