Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T14:33:58.410Z Has data issue: false hasContentIssue false

Epitaxy of Single Crystal Phase Change Materials on Si(111)

Published online by Cambridge University Press:  29 June 2011

P. Rodenbach
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
K. Perumal
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
F. Katmis
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
W. Braun
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany CreaTec Fischer Co. GmbH, Industriestr. 9,74391 Erligheim, Germany
R. Calarco
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
H. Riechert
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
Get access

Abstract

Phase change materials along the GeTe-Sb2Te3 pseudobinary line (GST) are grown by molecular beam epitaxy (MBE) on Si(111). The growth on (111) oriented substrates leads to greatly increased crystal quality compared to (001) oriented substrates, even for a high lattice mismatch. This holds true even for Si substrates which have a lattice mismatch of around 10% with respect to GST. The growth is controlled in situ via line of sight quadrupole mass spectrometer (QMS). Structural characterization is performed in situ by X-ray diffraction (XRD), which reveals a clear cubic symmetry of the film and a lattice slightly rhombohedrally distorted along the [111] direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wuttig, M., and Yamada, N. P.. Nature Mater. 6, 824832 (2007).Google Scholar
2. Braun, W., Shayduk, R., Flissikowski, T., Ramsteiner, M., Grahn, H. T., Riechert, H., Fons, P., and Kolobov, A., Appl. Phys. Lett. 94, 041902 (2009).Google Scholar
3. Shayduk, R., Katmis, F., Braun, W., and Riechert, H., J. Vac. Sci. Technol. B 28 (2010) C3E1.Google Scholar
4. Shayduk, R. and Braun, W.. J. Cryst. Growth 311, 22152219 (2009).Google Scholar
5. Makino, K., Tominaga, J., and Hase, M.. Opt. Express 19, 12601270 (2011).Google Scholar
6. Grube, H. and Boland, J. J.. Surface Science 407, 152161 (1998).Google Scholar