Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T00:00:15.709Z Has data issue: false hasContentIssue false

Epitaxial Si films Grown on Lattice Matched (LaxY1-x)O3/Si (111) Structures by Molecular Beam Epitaxy

Published online by Cambridge University Press:  11 February 2011

V. Narayanan
Affiliation:
IBM T.J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598
S. Guha
Affiliation:
IBM T.J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598
N. A. Bojarczuk
Affiliation:
IBM T.J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598
M. Copel
Affiliation:
IBM T.J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

Growth of epitaxial Si epitaxial overlayers on lattice matched (LaxY1-x)2O3/Si (LaYO/Si) structures has been investigated by high resolution transmission electron microscopy and reflection high energy electron diffraction. Results indicate that smooth two-dimensional near lattice-matched LaYO (111) films can be grown on Si (111) substrates. However, subsequent Si epitaxial growth on the LaYO/Si structures nucleates as three-dimensional islands, a consequence of the high energy of the Si overlayer/LaYO interface. We have investigated the effect of growth temperature on the microstructure of the Si overlayers. Higher temperatures resulted in the nucleation of large faceted islands and rough overlayers while lower temperatures result in smaller islands that coalesce at an early stage and produce smoother films. In addition, formation of planar defects in these films is attributed to stacking errors on the {111} facets of initial Si islands with lower temperatures resulting in a higher density of stacking faults and twins.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimoulas, A., Travlos, A., Vellianitis, G., Boukos, N., and Argyropoulos, K., J. Appl. Phys. 90, 4224 (2001).Google Scholar
2. Inoue, T., Ohsuna, T., Luo, L., Wu, X. D., Maggiore, C. J., Yamamoto, Y., Sakurai, Y., and Chang, J. H., Appl. Phys. Lett. 59, 3604 (1991).Google Scholar
3. Osten, H. J., Liu, J. P., Bugiel, E., Mussig, H. J., and Zaumseil, P., Mater. Sci. Engg. B 87, 297 (2001).Google Scholar
4. Cho, M. H., Ko, D. H., Choi, Y. K., Lyo, I. W., Jeong, K., Kim, T. G., Song, J. H., and Whang, C. N., J. Appl. Phys. 89, 1647 (2001).Google Scholar
5. Momose, H. S., Ohguro, T., Nakamura, S., Toyoshima, Y., Ishiuchi, H., and Iwai, H., IEEE Trans. Electron Devices, 49, 1597 (2002).Google Scholar
6. Jones, J. T., Croke, E. T., Garland, C. M., Marsh, O. J., and Mcgill, T. C., J. Vac. Sci. Technol. B 16, 2686 (1998).Google Scholar
7. Kim, C. G., J. Vac. Sci. Technol. B 18, 2650 (2000).Google Scholar
8. Guha, S., Bojarczuk, N. A., and Narayanan, V., Appl. Phys. Lett. 80, 766 (2002).Google Scholar
9. Ernst, F. and Pirouz, P., J. Appl. Phys., 64, 4526 (1988).Google Scholar