Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T10:25:25.276Z Has data issue: false hasContentIssue false

Epitaxial τMnAl/AlAs/GaAs Heterostructures with Perpendicular Magnetization

Published online by Cambridge University Press:  26 February 2011

T. Sands
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
J.P. Harbison
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
S.J. Allen
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
M.L Leadbeater
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
T.L Cheeks
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
M.J.S.P. Brasil
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
C.C. Chang
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
R. Ramesh
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
L.T. Florez
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
F. Derosa
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
V.G. Keramidas
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701–7040
Get access

Abstract

Epitaxial films of ferromagnetic τMnAl with perpendicular magnetization have been grown on {100}AlAs/GaAs substrates by molecular beam epitaxy. A multistep growth procedure involving the formation of a template followed by codeposition and subsequent annealing yields thin epitaxial τMnA1 films that exhibit the extraordinary Hall effect with nearly ideal hysteretic characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kono, H., J. Phys. Soc. Japan 13, 1444 (1958).Google Scholar
2. Koch, A.J.J., Hokkeling, P., Steeg, M.G.V.D., and Vos, K.J. de, J. Appl. Phys. 31 (Suppl.), 75S (1960).Google Scholar
3. Braun, P.B. and Goedkoop, J.A., Acta Crystallogr. 16, 737 (1963).Google Scholar
4.See review: Sands, T., Palmstrøm, C.J., Harbison, J.P., Keramidas, V.G., Tabatabaie, N., Cheeks, T.L., Ramesh, R. and Silberberg, Y., Mater. Sci. Reports 5, 99 (1990).Google Scholar
5. Sands, T., Harbison, J.P., Leadbeater, M.L., Allen, S.J. Jr, Hull, G.W., Ramesh, R. and Keramidas, V.G., Appl. Phys. Lett. 57, 2609 (1990).Google Scholar
6. Morisako, A., Matsumoto, M. and Naoe, M., J. Appl. Phys. 61, 4281 (1987).CrossRefGoogle Scholar
7. Harbison, J.P., Sands, T., Ramesh, R., Florez, L.T., Wilkens, B.J. and Keramidas, V.G., J. Crystal Growth (1991) in press.Google Scholar
8.See review: Dahlberg, E.D., Riggs, K. and Prinz, G.A., J. Appl. Phys. 63, 4270 (1988).Google Scholar
9. Leadbeater, M.L., Allen, S.J. Jr, DeRosa, F., Harbison, J.P., Sands, T., Ramesh, R., Florez, L.T. and Keramidas, V.G., J. Appl. Phys. (1991) in press.Google Scholar