Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T06:55:03.371Z Has data issue: false hasContentIssue false

Epitaxial La0.67(Sr,Ca)0.33MnO3 Films on Si for IR Bolometer Applications

Published online by Cambridge University Press:  17 March 2011

A.M. Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, SWEDEN
S.I. Khartsev
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, SWEDEN
J.-H. Kim
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, SWEDEN
Jun Lu
Affiliation:
Ångström Microstructure Laboratory, Uppsala University, SE-751 21 Uppsala, SWEDEN
Get access

Abstract

We report on processing and properties of La0.67(Sr,Ca)0.33MnO3(LSCMO) films grown by pulsed laser deposition technique on Si(001) substrates buffered with Bi4Ti3O12/CeO2/YSZ heteroepitaxial layers. X-ray diffraction shows cube-on-cube growth of epitaxial Bi4Ti3O12/CeO2/YSZ/Si heterostructure whereas the LSCMO layer grows in the “diagonal-on-side” manner onto the Bi4Ti3O12 (BTO) template. High resolution TEM images demonstrate sharp interfaces between the buffer layers and LSCMO film as well as rare misfit dislocations on the CeO2/YSZ interface. LSCMO film processing conditions have been optimized to get maximum temperature coefficient of resistivity TCR = 4.4%K-1 and colossal magnetoresistance(CMR) ‘Delta;ρ/ρ ∼ 2.9%kOe-1 @ 294K. Almost ultimate CMR performance at room temperature has been achieved due to successive improvement of c-axisorientation of layers: full widths at half-maximum (FWHM) 0.65, 0.58, 0.65, 1.13 and 0.18 degrees in LSCMO/BTO/CeO2/YSZ/Si stack, respectively. Characterization of electrical noise in CMR film yields noise equivalent temperature difference (NETD) as low as 1.2 ‘mu;K/√Hz @ 30Hz and 294K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lisauskas, Alvydas, Khartsev, S. I., Grishin, Alex, Appl. Phys. Lett. 77, 756 (2000); ibid 77, 3302 (2000).Google Scholar
2 Trajanovic, Z., Kwon, C., Robson, M.C., Kim, K. C., Rajeswari, M., Ramesh, R., Venkatesan, T., Appl. Phys. Lett. 69,1005 (1996).Google Scholar
3 Gu, J. Y., Kwon, C., Robson, M.C., Trajanovic, Z., Ghosh, K., Sharma, R. P., Shreekala, R., Rajeswari, M.. Venkatesan, T., and Ramesh, R., Appl. Phys. Lett, 70, 1763 (1997).Google Scholar
4 Wong, K. H., Leung, Y.S., Thin Solid Films, 354, 55 (1999).Google Scholar
5 Rubi, D., Duhalde, S., Terzzoli, M. C., Leyva, G., Polla, G., Levy, P., Parisi, F., Urbano, R.R., Physica B, 320, 86 (2002).Google Scholar
6 Kung, Pang-Jen, Fenner, D. B., Potrepka, Daniel M., Budnick, Joseph I., Appl. Phys. Lett, 69,427 (1996).Google Scholar
7 Khartsev, S. I. and Grishin, A. M., Mater. Res. Soc. Symp. Proc. 666, F7.12 (2001).Google Scholar
8 Lisauskas, A., Khartsev, S. I., Grishin, A.M., Proc. SPIE 4318, 235 (2001).Google Scholar
9 Unewisse, M. H., Craig, B. I., Watson, R. J., Reinhold, O., and Liddiard, K.C., Proc. SPIE 2554, 43 (1995).Google Scholar