Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T01:58:31.243Z Has data issue: false hasContentIssue false

Epitaxial Growth of Thin Ge Films on [001] Gaas by Laser Photochemical Vapor Deposition from GeH4

Published online by Cambridge University Press:  26 February 2011

V. Tavitian
Affiliation:
University of Illinois, Department of Electrical and Computer Engineering, 1406 West Green Street, Urbana, IL 61801
C. J. Kiely
Affiliation:
University of Illinois, Department of Electrical and Computer Engineering, 1406 West Green Street, Urbana, IL 61801
J. G. Eden
Affiliation:
University of Illinois, Department of Electrical and Computer Engineering, 1406 West Green Street, Urbana, IL 61801
Get access

Abstract

Epitaxial Ge films have been grown on [001] GaAs for substrate temperatures (Ts) as low as 285°C by photodissociating GeH4 at 193 nm in parallel geometry. For a laser fluence of ~15 mJ - cm-2, the film growth rate varies from 0.6 to ~5 nm - min-1, depending upon Ts and gas pressure. Plan and cross-sectional TEM studies of the Ge/GaAs bicrystal demonstrate that the 400–700 A thick Ge films are single crystal and epitaxial with the substrate. The present limitation on epitaxial film thickness appears to be imposed by reduced adatom mobility at the temperatures investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Donnelly, V. M., Geva, M., Long, J. and Karlicek, R. F., Appl. Phys. Lett. 44, 951 (1984).Google Scholar
2 Donnelly, V. M., Brasen, D., Appelbaum, A. and Geva, M., J. Appl. Phys. 58, 2022 (1985).Google Scholar
3 Donnelly, V. M., McCrary, V. R., Appelbaum, A., Brasen, D. and Lowe, W. P., J. Appl. Phys. 61, 1410 (1987).Google Scholar
4 Aoyagi, Y., Masuda, S., Namba, S. and Doi, A., Appl. Phys. Lett. 47, 95 (1985).Google Scholar
5 Karam, N. H., El-Masry, N. A. and Bedair, S. M., Appl. Phys. Lett. 49, 880 (1986).Google Scholar
6 McCrary, V. R., Donnelly, V. M., Brasen, D., Appelbaum, A. and Farrow, R. C., Mat. Res. Soc. Symp. Proc. 75, 223 (1987).Google Scholar
7 Doi, A., Aoyagi, Y. and Namba, S., Mat. Res. Soc. Symp. Proc. 75, 217 (1987).Google Scholar
8 Zinck, J. J., Brewer, P. D., Jensen, J. E., Olson, G. L. and Tutt, L. W., Mat. Res. Soc. Symp. Proc. 75, 233 (1987).Google Scholar
9 Krautle, H., Roentgen, P. and Beneking, H., J. Cryst. Growth 65, 439 (1983).Google Scholar
10 King, K. K., Tavitian, V., Geohegan, D. B., Cheng, E. A. P., Piette, S. A., Scheltens, F. J. and Eden, J. G., Mat. Res. Soc. Symp. Proc. 75, 189 (1987).Google Scholar