Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T02:40:39.134Z Has data issue: false hasContentIssue false

Epitaxial Growth of Ferroelectric Thin Films on GaAs with MgO Buffer Layers by Pulsed Laser Deposition

Published online by Cambridge University Press:  25 February 2011

K. Nashimoto
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304 Materials Research Laboratory, Fuji Xerox Co., Ltd., Minamiashigara, Kanagawa, 250-1, Japan
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304 Department of Applied Physics, Stanford University, CA 94305
F. A. Ponce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
T. H. Geballe
Affiliation:
Department of Applied Physics, Stanford University, CA 94305
Get access

Abstract

Epitaxial growth of ferroelectric thin films on GaAs (100) by pulsed laser deposition was examined for integrated electro-optic device applications. To promote epitaxy of ferroelectrics and prevent interdiffusion, we have deposited several types of buffer layers. CeO2 reacted strongly with GaAs. Although Y203 9% stabilized-ZrO2 films showed epitaxial growth, YSZ reacted with GaAs at 780°C. MgO grew epitaxially and was stable even at 780°C. HRTEM observation showed a sharp interface between MgO and GaAs. BaTiO3 and SrTiO3 deposited on MgO/GaAs structures showed epitaxial growth. In-plane orientation was BaTiO3 [100 // MgO [100] // GaAs [100]. Epitaxial BaTiO3 films were c-axis oriented tetragonal phase and showed ferroelectric hysteresis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adachi, H., Kawaguchi, T., Kitabatake, M., and Wasa, K., Jpn. J. Appl. Phys. 22, suppl. 22-2, 11 (1983).Google Scholar
2. Ameen, M. S., Graettinger, T. M., Rou, S. H., Al-Shareef, H. N., Gfford, K. D., Auchiello, O., and Kingon, A. I., Mat. Res. Soc. Symp. Proc. 200, 65 (1990).Google Scholar
3. Ramesh, R., Luther, K., Wilkins, B., Hart, D. L., Wang, E., and Tarascon, J. M., Inam, A., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1505 (1990).Google Scholar
4. Keijser, M. de, Dormans, G. J., Cillessen, J. F., Leeuw, D. M. de, and Zandbergen, H. W., Appl. Phys. Lett. 58, 2636 (1991).Google Scholar
5. Nashimoto, K. and Cima, M. J., Mater. Lett. 10, 348 (1991).Google Scholar
6. Fork, D. K., Nashimoto, K., and Geballe, T. H., Appl. Phys. Lett. 60, 1621 (1992).Google Scholar
7. Tsao, J. Y., Brennan, T. M., Klein, J. F., and Hammons, B. E., J. Vac. Sci. Technol. A7, 2138 (1989).Google Scholar
8. Ishida, M., Tsuji, S., Kimura, K., Matsunaga, H., and Tanaka, T., J. Cryst. Growth, 45, 393 (1978).Google Scholar
9. Mikami, M., Hokari, Y., Egami, K., Tsuya, H., and Kanamori, M., Proceedings of 15th Conference on Solid State Devices and Materials, Tokyo, 31, (1983).Google Scholar
10. Fukumoto, H., Imura, T., and Osaka, Y., Jpn. J. Appl. Phys. 27, L1401 (1988).Google Scholar
11. Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S., and Ueda, Y., Appl. Phys. Let. 56, 1332 (1990).Google Scholar
12. Fork, D. K., Ponce, F. A., Tramontana, J. C., and Geballe, T. H., Appl. Phys. Lett. 58, 2294(1991).Google Scholar
13. Nashimoto, K., Fork, D. K., and Geballe, T. H., Appl. Phys. Lett. 60, 1199 (1992).Google Scholar