Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-17T15:48:06.148Z Has data issue: false hasContentIssue false

Epitaxial Growth of CdTe on (100) GaAs/Si and (111) GaAs/Si Substrates Using Molecular Beam Epitaxy and Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  26 February 2011

G. Radhakrishnan
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91109
A. Nouhi
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91109
J. Katz
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91109
Get access

Abstract

CdTe is a very important semiconductor with versatile applications extending from solar energy conversion to optoelectronics. In addition, both the close lattice match between CdTe and HgCdTe and the immunity of CdTe to autodoping of the HgCdTe make CdTe the substrate of choice for the growth of HgCdTe. However, CdTe is extremely difficult to grow and the nonavailability of good quality, large area, inexpensive, single crystal CdTe has slowed the development of HgCdTe detectors. Infrared device processing requires large areas of single crystal material and the problems associated with CdTe have called for alternative substrates for growing HgCdTe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ghandhi, S.K. and Bhat, I., Appl. Phys. Lett. 45, 678 (1984).Google Scholar
2.Hoke, W.E., Lanonias, P.J., and Traczewski, R., Appl. Phys. Lett. 44, 1046 (1984).Google Scholar
3.Hoke, W.E., Traczewski, R., Kreismanis, V.G., Korenstein, R., and Lemonias, P.J., Appl. Phys. Lett. 47, 276 (1985).Google Scholar
4.Chou, R.L., Lin, M.S., and Chou, K.S., Appl. Phys. Lett. 48, 523 (1986).Google Scholar
5.Morkoc, H., Peng, C.K., Henderson, T., Kopp, W., Fischer, R., Erickson, L.P., Longerbone, M.D., and Youngman, R.C., IEEE Electron Device Lett. EDL 6, 381 (1985).Google Scholar
6.Soga, T., Hattori, S., Sakai, S., Takeyasu, M., and Umeno, M., J. Appl. Phys. 57, 4578 (1985).Google Scholar
7.Bean, R.C., Zanio, K.R., Hay, K.A., Wright, J.M., Saller, E.J., Fischer, R., and Morkoc, H., J. Vac. Sci. Technol. A4, 2153 (1986).Google Scholar
8.Ballingall, J.M., Takei, W.J., and Feldman, B.J., Appl. Phys. Lett. 47, 599 (1985).Google Scholar
9.Leopold, D.J., Ballingall, J.M., and Wroge, M.L., Appl. Phys. Lett. 49, 1473 (1986).Google Scholar