Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-27T00:01:24.906Z Has data issue: false hasContentIssue false

Epitaxial Growth And Electronic Characterization Of Carboncontaining Silicon-Based Heterostructures

Published online by Cambridge University Press:  10 February 2011

J. L. Hoyt
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305.
T. O. Mitchell
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305.
K. Rim
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305.
D. V. Singh
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305.
J. F. Gibbons
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305.
Get access

Abstract

Epitaxial Si1-x-yGexCy and Si1-yCy layers grown on Si are opening up new possibilities for bandstructure engineering of electronic devices. Thin Si1-yCy layers containing a few atomic percent substitutional carbon, grown on Si substrates, experience biaxial tensile strain, which produces a conduction band energy splitting that is expected to be favorable for in-plane electron transport. For other applications, C may be useful as a means of compensating the compressive strain of Ge in ternary Si1-x-yGexCy alloys. Although the understanding of the electronic properties of these materials is still at an early stage, interesting trends are emerging.

A key issue for synthesis of these alloys is the low equilibrium solubility of carbon in silicon. However, a number of non-equilibrium methods have been employed to grow these materials. This work focuses on the properties of Si1-yCy and Si1-x-yGexCy grown by chemical vapor deposition. There is a strong influence of the growth conditions on the fraction of the total carbon concentration which is substitutional on the silicon lattice. Using low temperatures (e.g. 550°C) and very high silane partial pressures for Si1-yCy growth, good agreement is obtained between the carbon contents determined by x-ray diffraction and secondary ion mass spectrometry, for carbon concentrations up to about 1.8 atomic percent. Metal-oxidesemiconductor capacitors fabricated on Si1-x-yGexCy and Si/Si1-yCy epitaxial layers show wellbehaved electrical characteristics. Temperature dependent capacitance-voltage analysis is used to extract the band offsets, and indicates that the conduction band energy is lowered as carbon is added to Si. Complementary to the case of strained Si1-xGex grown on Si, for which most of the energy offset is in the valence band, the band offset appears primarily in the conduction band for Si1-yCy/Si heterojunctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

«1» K Eberl, Iyer, S.S., Zollner, S., Tsang, J.C., and LeGoues, F.K., Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
«2» Kim, M., Lippert, G., and Osten, H.J., J. Appl. Phys. 80, 5848 (1996).Google Scholar
«3» Atzmon, Z., Bair, A.E., Jaquez, E.J., Mayer, J.W., Chandresekhar, D., Smith, D.J., Hervig, R., and Robinson, M.J., Appl. Phys. Lett. 65, 2599 (1994).Google Scholar
«4» Mi, J., Warren, P., Letoumeau, P., Judelewicz, M., Gailhanou, M., Dutoit, M., Dubois, C., and Dupuy, J.C., Appl. Phys. Lett. 67, 259 (1995).Google Scholar
«5»See for example Thin Solid Films, Vol.294 (1997), and references therein.Google Scholar
«6» Demkov, A. and Sankey, O.F., Phys. Rev. B 48, 2207 (1993).Google Scholar
«7» Berding, M.A., Sher, A., and van Schilfgaarde, M., Phys. Rev. B 56 (7), 3885 (1997).Google Scholar
«8» Hoyt, J.L., King, C.A., Noble, D.B., Gronet, C.M., Gibbons, J.F., Scott, M.P., Laderman, S.S., Rosner, S.J., Nauka, K., Turner, J., and Kamins, T.I., in Thin Solid Films 184, 93 (1990).Google Scholar
«9» Hoyt, J.L., Mitchell, T.O., Rim, K., Singh, D.V., and Gibbons, J.F., in Chemical Vapor Deposition. Proc. XIV Intl. Conf. and EUJR.OCVD-11., edt. Allendorf, M.A. and Bernard, C., (Electrochem. Soc., Pennington, NJ, 1997), pp. 12541265.Google Scholar
«10» Mitchell, T.O., Hoyt, J.L., and Gibbons, J.F., Appl. Phys. Lett. 71 (12), 1688 (1997).Google Scholar
«11» Hoyt, J.L., Mitchell, T.O., Rim, K., Singh, D.V., and Gibbons, J.F., to appear in Thin Solid Films, May, 1998.Google Scholar
«12» Fewster, P.F., computer code: High Resolution Simulation Program, (Philips Research Laboratories, Redhill, UK, 1990), see also P.F. Fewster and C.J. Curling, J. Appl. Phys.62, 4154 (1987).Google Scholar
«13» Landolt-Bornstein, , Numerical Data and Functional Relationships in Science and Technology, (Springer-Verlang, Berlin, 1987), Vol.22, p. 949.Google Scholar
«14» Olesinski, R.W. and Abbaschian, G.J., Bull. Alloy Phase Diagrams, 5, 180 (1984).Google Scholar
«15» Kelires, P.C., Phys. Rev. B 55, 8785 (1997.)Google Scholar
«16» Berti, M.. DeSalvador, D., Drigo, A.V., Romanato, F., Stangl, J., Zerlauth, S., Schaffler, F., Bauer, G., submitted to Appl. Phys. Lett., 1998.Google Scholar
«17» Rim, K., Takagi, S., Welser, J.J., Hoyt, J.L. and Gibbons, J.F., in Mat. Res. Soc. Symp. Proc., 342, Fitzgerald, E.A., Hoyt, J.L., Bean, J.C., and Cheng, K.Y., Editors (Mat. Res. Soc., Pittsburgh, PA, 1994), p. 327.Google Scholar
«18» Osten, H.J., Kim, M., Pressel, K., and Zaumseil, P., J. Appl. Phys. 80 (12), 6711 (1996).Google Scholar
«19» Zerlauth, S., Seyringer, H., Penn, C., and Schaffler, F., AppI. Phys. Lett. 71 (26), 3826 (1997).Google Scholar
«20» Mitchell, T.O., Ph.D. Thesis, Mat. Sci. and Engineering, Stanford Univeristy, in preparation.Google Scholar
«21» Lanzerotti, L.D., Amour, A. St., Liu, C.W., Sturm, J.C., Watanabe, J.K., and Theodore, N.D., IEEE Elec. Dev. Lett. 17 (7), 334 (1996).Google Scholar
«22» Lanzerotti, L. D., Sturm, J.C., Stach, E., Hull, R., Buyuklimanli, T., and Magee, C., in IEEE IEDM Tech. Dig., Dec. 1996, p. 249.Google Scholar
«23» Osten, H.J., Lippert, G., Knoll, D., Barth, R., Heinemann, B., Rucker, H., and Schley, P., in IEEE IEDM Tech. Dig., Dec. 1997, p. 803.Google Scholar
«24» Ray, S.K., John, S., Oswal, S., and Banergee, S.K., in IEEE IEDM Tech. Dig., Dec. 1996, p. 261.Google Scholar
«25» Rim, K., Mitchell, T.O., Hoyt, J.L., Fountain, G., and Gibbons, J.F., in this Volume, (Mat. Res. Soc., Pittsburgh, PA), Spring Meeting, April, 1998.Google Scholar
«26» Rim, K., Mitchell, T.O., Singh, D.V., Hoyt, J.L., Gibbons, J. F., and Fountain, G., Appl. Phys. Lett. 72 (19), 2286, 1998.Google Scholar
«27» Voinigescu, S.P., Iniewski, K., Lisak, R., Salama, C.A.T., Noel, J.P., and Houghton, D.C., Solid-State Electron. 37, 1491 (1994).Google Scholar
«28» TMA Medici, Version 2.2, Technology Modeling Associates, Sunnyvale, CA 94086.Google Scholar
«29» Welser, J.J., Application of Strained Si/Relaxed SiGe to MOSFETs, Ph.Thesis, D., Electrical Engineering, Stanford Univeristy, Dec. 1994.Google Scholar
«30» Singh, D.V., Rim, K., Mitchell, T.O., Hoyt, J.L., and Gibbons, J.F., in preparation.Google Scholar
«31» Faschinger, W., Zerlauth, S., Gauer, G. and Palmetshofer, L., Appl. Phys. Lett. 67, 933 (1995).Google Scholar
«32» Williams, R.L., Aers, G.C., Rowell, N.L., Brunner, K., Winter, W., and Eberl, K., Appl. Phys. Lett. 72 (11), 1320 (1998).Google Scholar
«33» Brunner, K., Eberl, K., and Winter, W., Phys. Rev. Lett 76, 303 (1996).Google Scholar
«34» People, R., Phys. Rev. B 32, 1405 (1985).Google Scholar
«35» Walle, C.G.Van de and Martin, R.M., Phys. Rev. B 34 (8), 5621 (1986).Google Scholar
«36» Morar, J.F., Batson, P.E., and Tersoff, J., Phys. Rev. B 47 (7), 4107 (1993).Google Scholar