Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T12:05:16.306Z Has data issue: false hasContentIssue false

Epitaxial Growth and Characterization of SiC on Different Orientations

Published online by Cambridge University Press:  01 February 2011

Larry B. Rowland
Affiliation:
rowland@research.ge.com, General Electric, GE Global Research, One Research Circle, Niskayuna, NY, 12309, United States
Canhua Li
Affiliation:
lic6@rpi.edu, Rensselaer Polytechnic Institute, Electrical, Computer, and Systems Engineering, 110 8th Street, Troy, NY, 12180-2786, United States
Greg T. Dunne
Affiliation:
dunne@research.ge.com, General Electric, GE Global Research, One Research Circle, Niskayuna, NY, 12309, United States
Jody A. Fronheiser
Affiliation:
fronheis@research.ge.com, General Electric, GE Global Research, One Research Circle, Niskayuna, NY, 12309, United States
Get access

Abstract

Background doping as well as intentional doping using nitrogen and trimethylaluminum have been investigated for 4H-SiC epitaxy on offcut Si face, C face, and a-axis substrates over a wide range of C:Si ratio. Smooth morphology can be obtained at a C:Si ratio of 2.0 on a-axis substrates but not on Si or C face material. Background doping levels of <1 × 1015 cm-3 were achieved on a-axis and Si face material. Nitrogen incorporated much more efficiently on C face and a-axis as compared to Si face. Aluminum incorporated most efficiently on Si face and least efficiently on C face. Both of the above dopant incorporation trends were most pronounced at high C:Si ratios and were small or virtually absent at low C:Si ratios.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearce, C. W., in VLSI Technology (ed. Sze, S. M., McGraw-Hill: New York, 1983), pp. 950.Google Scholar
2. Buczko, R., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 84, 943946 (2000).Google Scholar
3. Hallin, C., Ellison, A., Ivanov, I. G., Henry, A., Son, N.T., and Janzén, E., Mater. Sci. Forum 264–268, 123126, (1998).Google Scholar
4 Wada, K., Kimoto, T., Mishikawa, K., and Matsunami, H., Mater. Sci. Forum 483–485, 8588 (2005).Google Scholar
5. Rowland, L.B., Burk, A. A. Jr, and Brandt, C. D., presented at 39th Electronic Materials Conference, Boulder, CO, June 1997.Google Scholar
6 Blanc, C., Sartel, C., Soulière, V., Juillaguet, S., Monteil, Y., and Camassel, J., Mater. Sci. Forum 457–460, 237240 (2004).Google Scholar
7 Forsberg, U., Danielsson, Ö., Henry, A., Linnarsson, M. K. and Janzén, E., J. Cryst. Growth 236, 101112 (2001).Google Scholar
8 Kojima, K., Kuroda, S., Okumura, H., Arai, K., Microelectron. Eng. 83, 7981 (2006).Google Scholar
9 Blanc, C., Zielinski, M., Soulière, V., Sartel, C., Juillaguet, S., Contreras, S., Camassel, J., and Monteil, Y., Mater. Sci. Forum 483–485, 117120 (2005).Google Scholar
10 Konstantinov, A.O., Hallin, C., Pécz, B., Kordina, O., and Janzén, E., J. Cryst. Growth 178, 495504 (1997).Google Scholar
11 Kimoto, T. and Matsunami, H., J. Appl. Phys. 78, 3132–37 (1995).Google Scholar
12 Burk, A. A. Jr, and Rowland, L. B., Phys. Stat. Sol. (b) 202, 263–79 (1997).Google Scholar
13 Kimoto, T., Yano, H., Negoro, Y., Hashimoto, K., and Matsunami, H., in Silicon Carbide: Recent Major Advances (eds. Choyke, W.J., Matsunami, H., and Pensl, G., Springer-Verlag: Berlin, 2004), pp. 711733.Google Scholar
14 Kimoto, T., Itoh, A., and Matsunami, H., Appl. Phys. Lett. 67, 2385–87 (1995).Google Scholar
15 Larkin, D. J., Neudeck, P. G., Powell, J. A., and Matus, L. G., Appl. Phys. Lett. 65, 1659–61 (1994).Google Scholar